完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
在电子信息领域,函数发生器(信号源)是通用的设备。近年来电子信息威廉希尔官方网站
的飞速发展,使得各领域对信号源的要求在不断提高。不但要求其频率稳定度和准确度高,要求频率改变的方便性,而且还要求可以产生任意波形,输出不同幅度的信号等。而实现频率合成方法有许多种,但基本上可以归纳为直接频率合成和间接频率合成两大类方法。采用传统的频率合成威廉希尔官方网站
要实现上述要求,几乎是不可能的。DDFS威廉希尔官方网站
是自21世纪70年代出现的一种新型的直接频率合成威廉希尔官方网站
。DDFS威廉希尔官方网站
是在信号的采样定理的基础上提出来的,从“相位”的概念出发,进行频率合成,不但可利用晶体振荡的高频率稳定度、高准确度,且频率改变方便,转换速度快,便于产生任意波形等,因此,DDFS威廉希尔官方网站
是目前高精密度信号源的核心威廉希尔官方网站
。目前已有专用的DDFS芯片,如美国AD公司的AD9850等可用于DDS信号源的开发,但其成本较高。本设计将采用DDFS威廉希尔官方网站
,在FPGA上进行信号源的设计,其成本大大降低,且设计灵活方便,易于各种功能的扩展等。
1 DDFS威廉希尔官方网站 原理 DDFS威廉希尔官方网站 的原理:将对正弦等各种信号的采样量化数据存入ROM存储器中,在时钟的控制下,依次或隔一定步进读取ROM中的数据,再通过D/A转换芯片及后级的低通滤波器来实现频率合成的一种方法。其原理框图如图1所示。其主要的组成部分包括:相位累加器(也可理解为ROM存储单元的读地址发生单元)、正弦信号采样量化数据存储ROM表、D/A转换及低通滤波器。 DDFS参数计算:DDFS的主要参数包括正弦信号的采样点数,最高输出频率fomax,最低输出频率fomax及频率分辨率△fo等。根据DDFS原理可知,在时钟控制下将所有ROM存储数据依次读出,则输出的信号周期最长Tomax=NTc,即输出频率最低为fomax;只读出两个点(∏/2和3∏/2)的采样数据,则输出的信号周期最短Tomin=2Tc,即输出频率最高为fomax。其中Tc为时钟周期。相应计算如下。 (1)输出信号频率通式:fo=Sfc/2n,其中2n为采样点个数N,故可知n为采样后ROM的地址位数;其中S为步进长度,即每S个地址取一个采样点; (2)输出最低频率 (3)输出最高频率 虽然根据奈奎斯特采样定理,一个周期采样两个点即可保证信号的频谱信息不丢失,但为了输出信号滤波后失真较小,一个周期至少采样8个点;故可知S的取值范围应该为1~2n-3; (4)频率分辨率△fo:△fo=fc/2n,与最低频率一致。 2 DDFS的FPGA实现的参数计算 本设计充分利用CycloneII系列FPGA芯片EP2C35的片上资源来实现一个基于DDFS的正弦信号源。由于此芯片的片上可用ROM单元为483,840位二进制,因此,片上ROM资源只能够存储215(32768)个8位二进制采样点的数据。 (1)ROM资源优化:由于是正弦信号,因此只要采样其(0,n/2)区间上的函数值,即可根据其周期性及对称性,求出其他区间上的相应的函数值。故,虽然片上资源只能存储215(32768)个8位二进制数据,但利用正弦信号的对称性,可实现217点采样。由于正弦信号在(n~2n)间为负值,因此输出函数值时,需要进行补码转换; (2)地址位长度:ROM的寻址地址为15位二进制数; (3)步进位长度:步进最大应为217/23=214,即步进为14位的二进制数; (4)相位控制字:相位是指读取数据时,应该属于(0,2n)上的哪个区间,由于共有4个不同的区间。故可采用2位的二进制数来标识;不同的相位区间,决定着地址的读取方向及输出函数值是否取补码运算; (5)任意波形的产生:要产生任意波形,可利用任意波形如矩形脉冲、三角波、锯齿波等的傅利叶级数分解表达式,取其前有限次(如10次)谐波进行求和并存入指定的RAM单元,再依次读出数据,即可产生任意的信号。也可以将相应波形的数据进行采样,存入ROM中,按一定步进进行读取。通过以上分析,在充分利用片上存储单元,不扩展外部存储器,地址时钟为10 MHz的基础上,可得频率分辨率为△f=78 Hz,输出信号最高频率(一个周期最少采样8个点)为fomax=fc/8=1.25 MHz;输出信号最低频率为fomin=Sfc/2n|s=1=fc/217=78 Hz。若采样点达到232个及以上,频率分辨率可以做到0.015 Hz,达到mHz量级。可见利用Cyclone II系列芯片设计出性能优良的信号源。 3 DDFS的FPGA实现 根据DDFS的原理,其FPGA设计原理如图2所示。其中控制单元由有限状态机构成。虽然整个系统的控制不一定需要使用有限状态机,但由于使用的FPGA芯片不支持异步的ROM,即从地址锁存进入ROM单元,到数据从ROM中读出有至少一个时钟周期以上的延时。因此采用状态机来进行控制,可以达到较好的输出与时钟同步。控制流程为:时钟信号进入控制单元,由它产生地址发生单元的输入时钟adrclk,地址发生单元在时钟adrclk的驱动下,结合输入的步进信号Step,产生地址及此地址所对应的象限Phase,此地址产生后立即输入到ROM单元中,过两个时钟周期后,控制单元从ROM存储单元中读出输入地址对应的数据,并在时钟的控制下,将前面所产生的象限值Phase与ROM数据一起送到补码转换单元,补码转换单元根据Phase的值来决定是否需要进行补码转换,若需要,则进行补码运算并将数据输出,若不需要,则直接将数据输出。下面给出各模块的具体设计细节。 (1)控制单元:控制单元是整个系统的核心部件。由一个简单的有限状态机构成。其状态转换图如图3所示。 (2)地址发生单元:设计思路为根据输入的Step值,计算出总共四个象限所需取值的点数,也就可以计算出一个象限所要取值的点数m,然后在时钟作用下进行计数,当计数值达m个时,说明一个象限内已经取完点,此时phase自加1,计数变量重新置零。由于在(0,π/2)sin的函数值为从0→1变化;(π/2,π)函数值从1→0变化;(π,3π/2)函数值从0→-1变化;(3π/2,2π)函数值从-1→0变化。故在(0,π/2)和(π,3π/2)地址值从0→32767,每隔一个步进Step读一个数据,当然后者的数据要经过补码单元的处理;而在(π/2,π)和(3π/2,2π)象限,地址值则从32767→0,每隔一个步进Step读一个数据即可,同样的,后者的数据也要经过补码单元的处理。 (3)ROM存储单元:ROM存储单元的数据可以通过Matlab进行计算获得,并将其存储为*.mif的文件格式。在进行ROM设计时,调用此mif文件作为ROM的初始数据文件即可。 (4)补码转换单元:根据目前地址所处象限来决定是否需要进行补码转换。如产生正弦信号时,(0,π)象限sin函数值为正,而(π,2π)象限上sin函数值为负,因此在(π,2π)象限时,需要对输出数据进行补码转换。补码转换单元较简单,根据二进制数取补的原理进行设计即可。 4 结果分析 本设计在QuartusII6.0的平台上完成设计工作,其仿真波形如图4所示。在仿真波形中设置的步进长度为1024点。由于有状态机进行流程控制,产生的波形较平滑,元多滑毛刺产生。若要进一步提高输出信号频率范围,则设计过程中,不应对时钟信号进行分频。 同时,还可以利用QuartusII的SigTapII工具对所设计的程序进行硬件验证,设置好相应步进后,相应的输出波形如图5及图6所示。可见所产生的低频正弦信号波形平滑,而频率较高时有一定的毛刺,这可以通过后级的低通滤波电路(如切比雪夫低通滤波网络等)来进行滤除。 本设计使用的逻辑单元只占FPGA片上资源的1%,存储单元占54%,I/O口占13%。可见主要资源为片上的存储单元,如果提高一位地址位,则数据量翻倍,FPGA片上ROM不够用。通过QuartusII6.0的时钟分析,本设计可达到的最高时钟为149.41 MHz,而地址发生的时钟为时钟的4分频,故地址发生单元的最高时钟可达37.352 5 MHz,相应的输出信号最高频率可达4.665 MHz,相应的最低频率及频率步进为284.976 Hz。 5 结束语 本设计在不向外扩展ROM存储器的情况下,对DDFS设计进行优化,充分利用Cyclone II系列FPGA的片上资源,其输出正弦信号最高频率可达4 MHz以上。只要采用更好的方案进行设计,使采样点可以做到232个及以上,频率分辨率可以做到0.015 Hz,达到mHz量级,进一步提高信号源的输出信号频率范围及频率分辨率等威廉希尔官方网站 指标,可利用Cyclone II系列芯片设计出性能优良的信号源,达到实用信号源的要求。 |
|
|
|
只有小组成员才能发言,加入小组>>
866 浏览 0 评论
1191 浏览 1 评论
2566 浏览 5 评论
2901 浏览 9 评论
移植了freeRTOS到STMf103之后显示没有定义的原因?
2762 浏览 6 评论
keil5中manage run-time environment怎么是灰色,不可以操作吗?
1206浏览 3评论
214浏览 2评论
487浏览 2评论
399浏览 2评论
M0518 PWM的电压输出只有2V左右,没有3.3V是怎么回事?
482浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-24 11:45 , Processed in 1.001314 second(s), Total 79, Slave 60 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号