完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
本期咱们继续来聊聊电池包 SOH 的算法实现,本次主要聊一聊用电化学阻抗谱法,基于模型的估算和机械疲劳的理论方法来实现 SOH 的估算。上一篇文章没有看到的朋友不用着急,文章中会有上一篇的链接。趁着周末的大好时光,一起来学习下吧!
阻抗谱法 电池模型参数化的一个已知的模型是电化学阻抗谱(Electrochemical Impedance Spectroscopy- EIS)。此模型的主要优势就是可以利用动态的电流来进行估算,利用电流流动时的 SOC 的变化。 EIS 一般用于 SOC 的估算,但也会用来作为 SOH 的学术研究。研究了温度、放电深度(DOD)和循环次数对锂离子电池放电容量的影响。日历寿命和循环寿命都已经考虑在内,并且都进行了测试,结果表明:随着温度的上升(20℃ -> 40℃)或者是放电深度的变化(20% -> 40%),会加快电池的容量衰减。容量衰减是循环次数平方根的函数,循环次数是电芯寿命的线性函数。下图展示了由于电流(C/3)的中断引起的在不同 SOC 水平下的电池电压变化的测量: 图 1 一定条件下的电压变化测量来估算 SOH△V1 是施加放电负载时的电压降;△V2 是当电流移除时的电压回升;△V3 是 20 分钟后的总的电压回升。这三个可测量的参数被用来研究,目的是找到他们和 SOH 的关系。并且研究结果表明:由于放电(△V1 表明放电的电阻)引起的电压降与循环数是线性关系并且可以用来估算电池的 SOH。 基于 EIS 威廉希尔官方网站 来分析电芯的主要优势是精度;然而,缺点是由于他们本身的复杂性,很难被应用到实际工程中。因此,此种方法不适用于在线实时应用。 在线电池参数辨识法 在众多的电池 SOH 估算威廉希尔官方网站 中,为了提高估算的精度,构造了一种电芯模型,并且将其用来支持测量的数据。在此种方法中,一个电芯的数学模型与实时系统并行运行,来预测电池在电流输入下的终端电压输出。预测的数值和实际测量之间的误差被作为模型的修正。 一种基于模型估算 SOH 的方法的基本框架如下图所示。包含:实时在线测量,电池模型参数化(参数辨识)和一个在参数和电池 SOH 之间的非线性映射。SOH 估算器会在离线时受训来找到 SOC 和 SOH 之间的关系。在估算单元中也可以把温度的影响考虑进来。 图 2 在线参数辨识估算电池 SOH 在此估算器中,辨识结果与 SOH 之间的非线性映射函数如下: SOH = g (P1, P2, P3, ...) 此处 Pi 是第 i 个辨识的电池参数。在图 2 中,只有一个参数被考虑进来——欧姆放电电阻;然而,一个联合的参数可以被用在此框架中。此威廉希尔官方网站 的缺点是需要在各种条件下的足够大量的测试数据来训练此模型。 比如,卡尔曼滤波器用来在线辨识电池的欧姆电阻,用于 SOH 估算。同时,对电池老化的过程进行研究,建立各种条件下的欧姆电阻与 SOH 关系的查表(图)。最终,整个系统是由参数辨识器(KF)和查表组合而成,使用的概念类似于图 2 展示的框架。 机械疲劳理论估算 SOH 此方法来源于机械疲劳理论(Mechanical Fatigue Theory)。机械疲劳理论在阐述了在不同的载荷作用下的“疲劳现象”。在某些情况下,组件可能会承受反复的开关负载。一定数量的负载循环之后,内部可能会出现疲劳现象,此现象通常可能导致组件的崩溃。使用机械疲劳理论,在这种负载的条件下,组件的寿命可以被估算成循环数的函数。 基于机械疲劳理论的电池 SOH 估算方法的威廉希尔官方网站 之一的理论是“损害累积”(Damage Accumulation)。用这种方法,电池的老化是使用一个框架来估算的,在这个框架中,机械部件的老化时用 Palmgren-Miner 规则来计算的。该规则定义了在一些列可变负载下的组件的机械寿命。组件的寿命是根据在给定条件下施加的负载的循环数来计算。在此类表述中,组件的 EOL 由寿命降低指数(LRI)来定义,介于 0 和 1 之间,单位值表示 EOL。在这种方法中,每个部件都需要在不同载荷条件下进行试验。假设 Ni 是在定义负载(Li)条件下的循环数,N(Li) 是新的在相同负载失效前的条件下的组件的循环数, LRI 在一系列的变化的负载(Li, i=1...s)中的定义如下: N(Li) 基于实验测试数据来获取,并且其也被定为 EOL。实际上,电池的 EOL 被通过不同的方式定义。使用容量衰减的概念来定义电池的 EOL,一个损害测量定义如下: 此种方法给出的有效结果,当且仅当以下的因子分解是可行的: 定义为寿命因数, 定义为严重度因数。严重度因数取决于参数,比如温度,放电深度,电流比率,并且它取决于基于老化的实验测试数据。 |
|
|
|
只有小组成员才能发言,加入小组>>
23462个成员聚集在这个小组
加入小组1020 浏览 1 评论
1174 浏览 1 评论
12574 浏览 0 评论
5976 浏览 3 评论
17768 浏览 6 评论
1056浏览 1评论
1073浏览 1评论
40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN!
462浏览 1评论
1020浏览 1评论
5668浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-24 06:34 , Processed in 0.703940 second(s), Total 47, Slave 39 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号