完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
4个回答
|
|
什么是物体检测模型?
物体检测模型本质上,正如其名称所示,检测物体。这意味着给定一个图像,它可以告诉你物体在哪里,以及这个物体是什么。例如,在上面的图像中,我们有许多物体,并且使用物体检测模型,我们已经检测出不同的物体在图像中的位置。 这类模型有很多应用。举几个例子,物体检测在以下方面很有用: 自动驾驶汽车,可以检测到乘客、其他车辆、红绿灯和停车标志。 安保,模型可以探测到公共区域的枪支或***,并向附近的警察报警。 总的来说,这类模型非常有用,在过去几年里,机器学习社区已经对它们进行了大量的研究。 |
|
|
|
物体检测中区域建议的介绍
首先,让我们了解一下物体检测模型是如何工作的。首先,我们必须给出一个物体的建议位置。我们把这个建议的位置称为我们感兴趣的区域,通常显示在一个边界框(也称为图像窗口)中。根据物体检测模型的类型,我们可以通过许多不同的方式来实现这一点。 朴素方法:我们将图像分割成多个部分,并对每个部分进行分类。这种方法效率低下是因为必须对每个生成的窗口应用分类网络(CNN),导致计算时间长。 滑动窗口方法:我们预先确定好窗口比例(或“锚”),然后滑过图像。对于每个窗口,我们处理它并继续滑动。与朴素方法类似,这种方法生成的窗口较多,处理时间也比较长。 选择性搜索:使用颜色相似度,纹理相似度,和一些其他的图像细节,我们可以用算法将图像分割成区域。虽然选择性搜索算法本身是耗时的,但这使得分类网络的应用需求较少。 区域建议网络:我们创建一个单独的网络来确定图像中感兴趣的区域。这使得我们的模型工作得更快,但也使得我们最终模型的准确性依赖于多个网络。 上面列出的这些不同选项之间有一些区别,但一般来说,当我们加快网络的处理时间时,我们往往会牺牲模型的准确性。 区域建议机制的主要问题是,如果建议的区域不包含物体,那么你的分类网络也会去分类这个区域,并给出一个错误的标记。 |
|
|
|
那么,什么是Objectness?
Objectness本质上是物体存在于感兴趣区域内的概率的度量。如果我们Objectness很高,这意味着图像窗口可能包含一个物体。这允许我们快速地删除不包含任何物体的图像窗口。 如果一幅图像具有较高的Objectness,我们期望它具有: 在整个图像中具有唯一性 物体周围有严格的边界 与周围环境的外观不同 例如,在上面的图像中,我们期望红色框具有较低的Objectness,蓝色框具有中等的Objectness,绿色框具有较高的Objectness。这是因为绿色的框“紧密”地围绕着我们的物体,而蓝色的框则很松散,而红色的框根本不包含任何物体。 |
|
|
|
我们如何度量Objectness?
有大量的参数影响图像窗口的objectness。 多尺度显著性:这本质上是对图像窗口的外观独特性的度量。与整个图像相比,框中唯一性像素的密度越高,该值就越高。 颜色对比度:框内像素与建议图像窗口周围区域的颜色对比度越大,该值越大。 边缘密度:我们定义边缘为物体的边界,这个值是图像窗口边界附近的边缘的度量值。一个有趣的算法可以找到这些边缘:https://cv-tricks.com/opencv-dnn/edge-detection-hed/。 超像素跨越:我们定义超像素是几乎相同颜色的像素团。如果该值很高,则框内的所有超像素只包含在其边界内。 超像素区域以不同颜色显示。请注意,框内的超像素大部分不会泄漏到图像窗口之外。因此,这个“超素跨界”值将会很高。 以上参数值越高,objectness越高。试着将上述参数与我们前面列出的具有高objectness的图像的期望联系起来。 |
|
|
|
只有小组成员才能发言,加入小组>>
3441个成员聚集在这个小组
加入小组物联网工程师必备:怎么选择不同的无线连接威廉希尔官方网站 ,本指南帮你忙!
3302 浏览 1 评论
【DFRobot TinkerNode NB-IoT 物联网开发板试用连载】WIFI功能测试
3956 浏览 0 评论
【DFRobot TinkerNode NB-IoT 物联网开发板试用连载】Arduino的替代SublimeText3+STino
3460 浏览 0 评论
使用端口扩展器轻松高效地向IIoT端点添加具有成本效益的子节点
4026 浏览 1 评论
20708 浏览 11 评论
模组有时候复位重启后输出日志为“REBOOT_CAUSE_SECURITY_PMU_POWER_ON_RESET”的原因?
843浏览 2评论
1075浏览 2评论
1075浏览 1评论
1194浏览 1评论
412浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-11 21:22 , Processed in 0.894846 second(s), Total 83, Slave 67 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号