完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
3个回答
|
|
经典的分立差动放大器设计非常简单。一个运算放大器和四电阻网络有何复杂之处?
但是,这种电路的性能可能不像设计人员想要的那么好。本文从实际生产设计出发,讨论了与分立电阻相关的一些缺点,包括增益精度、增益漂移、交流共模抑制(CMR)和失调漂移等方面。 经典的四电阻差动放大器如图1所示。 图1. 经典分立差动放大器 该放大器电路的传递函数为: 若R1 = R3且R2 = R4,则公式1简化为: 这种简化有助于快速估算预期信号,但这些电阻绝不会完全相等。此外,电阻通常有低精度和高温度系数的缺点,这会给电路带来重大误差。 例如,使用良好的运算放大器和标准的1%、100ppm/°C增益设置电阻,初始增益误差最高可达2%,温度漂移可达200ppm/°C。为解决这个问题,一种解决方案是使用单片电阻网络实现精密增益设置,但这种结构很庞大且昂贵。除了低精度和显著的温度漂移之外,大多数分立差动运算放大器电路的CMR也较差,并且输入电压范围小于电源电压。此外,单片仪表放大器会有增益漂移,因为前置放大器的内部电阻网络与接入RG引脚的外部增 益设置电阻不匹配。 解决所有这些问题的最佳办法是使用带内部增益设置电阻的差动放大器,例如AD8271。通常,这些产品由高精度、低失真运算放大器和多个微调电阻组成。通过连接这些电阻可以创建各种各样的放大器电路,包括差动、同相和反相配置。芯片上的电阻可以并联连接以提供更广泛的选项。相比于分立设计,使用片内电阻可为设计人员带来多项优势。 图2. 增益误差与温度的关系——AD8271与分立解决方案比较 |
|
|
|
只有小组成员才能发言,加入小组>>
1908个成员聚集在这个小组
加入小组843 浏览 2 评论
12793 浏览 0 评论
4088 浏览 7 评论
2312 浏览 9 评论
2126 浏览 2 评论
431浏览 2评论
719浏览 2评论
845浏览 2评论
570浏览 1评论
627浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-10 14:33 , Processed in 0.714876 second(s), Total 48, Slave 43 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号