从结构框图中可以看出系统由以数据处理核心,光电转换、模数转换、LCD显示、数据存储和USB
通信等外围功能模块构造而成。由于光纤微扰动传 感器的传感采用的是光纤,所以首先需要将信号经过光电转换和A/D转换,将信号转换为适于FPGA处理的数字信号。然后,在FP-GA中进行数据处理,判 断接收信号是否是入侵行为。如果存在入侵行为,则同时将采集到的信号存入存储器,并在LCD上显示入侵位置;如果没有入侵行为,则在LED上显示正常,采集到的数据释放。USB通信模块只在系统和PC机相连的时候,将存储器中数据上传到PC机中。
1.2 系统硬件设计
马赫-泽德/马赫-泽德混合干涉仪方案将扰动位置求解问题就转化为测量两路信号到达测量端的时间差,因此求扰动点的位置的问题转换为求两路信号 的时间延迟估计问题。对于时间延迟估计问题,目前大多采用相关检测方法计算。系统采用相关检测算法,需要进行大量互相关计算。互相关计算的具体实现是由大 量的乘法和加法组成的,所以对数据处理速度要求很高。计算量很大,不过比较适合并行计算。系统的数据处理部分采用的是XC4VSX25,Virtex-4 SX系列是Virtex-4平台中专门为了高性能数字信号处理(DSP)应用解决方案而设计的。XC4-VSX25中含有128个XtremeDSPSlice,而每个XtremeDSPTMSlice包含1个18×18位带补数功能的有符号乘法器、加法器逻辑和1个48位累加器。每个乘法器或累加器都能独立使用。
XC4VSX25中含有多个XtremeDSP Slice,而且FPGA中的XtremeDSP Slice可通过IP核的形式方便地调用。同时XtremeDSP Slice中每个乘法器或累加器都能独立使用,在XC4VSX25中可方便地将乘法器和累加器组合,构成所需要的数据处理结构,所以采用XC4VSX25 为系统的数据处理器。
光电转换部分采用PINFET,是目前比较通用的光电转换器件。 模数转换模块采用的是12位双通道差分输入SAR型AD7356,结构简单实用。大容量存储模块采用SUMSUNG公司具有200 μs的页写速度的1 GB容量K9K8G08UOM型Flash,可以满足系统的实时性,并能够存储较长时间的扰动信号。LCD模块采用的是3.3 V单
电源供电的320x240大屏幕点阵液晶ZXM320240E1,有足够的空间将多路的情况同时显示在屏幕上,而且由于系统选用FPGA的管脚电压为 3.3V,可以避免电平转换,电路简洁。USB通信模块采用的是集成了8051
单片机的CY7C68013A型USB控制器。
其中A/D转换部分由于系统要求16路.每路12位1~5 M采样速率,并且由于系统的扰动定位算法采用相关检测法,是对时间延迟进行检测,因此需要在A/D转换的过程尽量减小因为转换而带来的时间延迟误差。选用 12位双通道差分输入SAR型AD7356,该A/D为双通道型,所以两路信号的转换是同时进行,减小了因转换带来的时间延迟。而且AD7356的采样频 率由输入时钟信号决定,因此可以很方便的改变系统的采样频率,满足系统1~5 M的采样速率要求。
另外,比较各A/D转换器的复杂程度发现多通道(4路或以上)A/D由于其设计的多功能性,导致结构复杂,使用比较繁琐,而AD7356采用 16引脚的TSSOP封装,外围电路简单。另外该A/D采用单2.5 V供电,可与FPGA共用电源,使系统的供电系统简洁。而高速A/D转换器的输入是差分式,如图2所示,使用AD8138单端至差分转换驱动AD7357 的差分输入。
系统中有模拟地 和数字地之分,同时A/D转换器由于其特殊性,处于模拟地和数字地之间,所以对于AD7357的管脚连接应注意。AD7357的REFA和REFB管脚需 要通过10μF的退耦电容连接到REFGND管脚,而REFGND管脚则需要连接到AGND管脚。而A/D转换器要求AGND和DGND之间的电平相差不 能超过0.3 V,所以需要将AGND和DGND连接起来。为了避免模拟电路和数字电路之间的干扰,一般情况需要对地分割,但是本系统有多个A/D转换器,所以使用统一 地,通过对器件合理摆放来减小模拟和数字电路间的干扰。