直流电机具有优良的调速特性,]许多半导体公司推出了直流电机专用驱动芯片, 但这些芯片多数只适合小功率直流电机, 对于大功率直流电机的驱动, 其集成芯片价格昂贵。 基于此, 本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题, 有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。 该电路驱动功率大, 抗干扰能力强, 具有广泛的应用前景。 2 H 桥功率驱动电路的设计
在直流电机中,]要控制电机的正反转, 需要给电机提供正反向电压, 这就需要四路开关去控制电机两个输入端的电压。 当开关S1 和S4 闭合时, 电流从电机左端流向电机的右端, 电机沿一个方向旋转;当开关S2 和S3 闭合时, 电流从电机右端流向电机左端, 电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。 图1 H 桥驱动原理电路图 2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,]在本设计中, 电机工作电流为3.8A, 工作电压24V, 电机驱动的控制端为51 系列单片机, 最大灌电流为30mA. 因此采用MOS管作为H桥的开关器件。 MOS管又有NMOS和PMOS之分, 两种管子的制造工艺不同, 控制方法也不同。 NMOS 导通要求栅极电压大于源极电压(10V-15V), 而PMOS 的导通要求栅极电压小于源极电压(10V-15V)。 在本设计中, 采用24V 单电源供电, 采用NMOS 管的通断控制的接线如图2 所示, 只要G 极电压在10-15V 的范围内, NMOS 即可饱和导通, G 极电压为0 时, NMOS 管关断。 图2 NMOS 接线图 采用PMOS] 图3]10V《VCC-Vg《15 时PMOS 打开。 当VCC》15V 时, 要使PMOS 导通则G 极电压为VCC-15V. PMOS 的导通与关断, 是在电源电压VCC 与VCC-15V 之间切换, 当电源电压VCC 较大时控制不方便。 比较图2 图3 可知:NMOS位于负载的下方, 而PMOS 位于负载的上方, 用NMOS 和PMOS, 替换掉图1 中的开关, 就可以组成由MOS 管组成的H 桥, 如图4 所示。 图4 PMOS 和NMOS 管构成的H 桥 Q1] 图5]图5NMOS 管组成的H 桥中, 首先分析由Q1 和Q4 组成的通路, 当Q1 和Q4 关断时, A 点的电位处于“悬浮”状态(不确定电位为多少)(Q2 和Q3 也关断)。 在打开Q4 之前, 先打开Q1, 给Q1 的G 极15V 的电压, 由于A 点“悬浮”状态, 则A 点可以是任何电平, 这样可能导致Q1 打开失败;在打开Q4 之后, 尝试打开Q1, 在Q1 打开之前, A 点为低电位, 给Q1 的G 极加上15V 电压, Q1 打开, 由于Q1 饱和导通, A 点的电平等于电源电压(本系统中电源电压为24V), 此时Q1 的G 极电压小于Q1 的S 极电压, Q1 关断, Q1 打开失败。 Q2 和Q3 的情况与Q1 和Q4 相似。 要打开由NMOS 构成的H 桥的上管, 必须处理好A 点(也就是上管的S 极)“悬浮”的问题。 由于NMOS的S 极一般接地, 被称为“浮地”。 要使上管NMOS 打开, 必须使上管的G 极相对于浮地有10-15V 的电压差, 这就需要采用升压电路。 2.3 H 桥控制器在H桥的驱动中,]本系统中采用IR2103 作为NMOS 控制器, IR2103 内部集成升压电路, 外部仅需要一个自举电容和一个自举二极管即可完成自举升压。 IR2103 内部集成死区升成器, 可以在每次状态转换时插入“死区”, 同时可以保证上、下两管的状态相反。 IR2103 和NMOS 组成的H 桥半桥电路如下图6 所示: 图6 IR2103 和NMOS 管构成的H 桥半桥电路 由IR2103] 其中:]图中D1 为自举二极管, C4 为自举电容。 并不是电容的值越大就越好, 电容的取值和IR2103 的工作频率密切相关, 电容取值越大工作频率越低。 电容的漏电流对系统的性能有很大影响。 自举二极管要承受系统所有的电压, 自举二极管的前向压降也影响着自举电容的选择, 同时自举二极管的开关速度也直接影响系统的工作频率, 一般选用超快恢复二极管。 由示波器获得自举电路升压波形如下图7 所示: 图7 自举电路升压波形 图中B部分为自举升压后VB端的电压,] 图8]图中D2即为续流二极管, 续流二极管采用普通二极管即可, 但VS电压恢复越快, 自举电容过充现象越不明显, 本系统采用1N4148 作为续流二极管。 由于驱动器和MOSFET] 图9]MOS 管的关断时间要比开启时间慢(开启充电, 关断放电), 因此就要改变MOS 管的关断速度, 可以在栅极电阻上反向并联一个二极管(如图9 中A 所示), 当MOS 管关断时, 二极管导通, 将栅极电阻短路从而减少放电时间。 由于VS 端可能出现负电压, 在VS 端串入一个合适的电阻, 可以在产生负电压时起到限流作用, 针对负载电机为感性器件, 在H 桥的输出端并一个小电容, 并在局部供电部分加一个去藕电容十分必要。 其电路如下图所示: 图10 限流去耦电路。 图中C7]为了对驱动器性能进行测试, 选用25D60-24V 的直流电机进行闭环控制控制, 电机的额定功率为60W, 额定转速为2800rpm, 额定电压为24V, 额定电流为3.8A. 其电机的最高转速可达2910rpm, 电机启动的最低转速为44rpm, 堵转时无明显发热现象。 为了测试电路工作的稳定性, 连续三天电机工作8 小时以上, 电路的发热较小;为了测试电路的抗冲击, 抗干扰能力, 系统在开与关之间连续进行多次切换, 电路工作没有出现任何故障;另外系统在突然增加负载的情况下也能正常工作。 因此完全满足驱动的需要, 而且设计过程中, 为防止启动和制动电流的骤然升高, 电路有较大的电流冗余, 电路中最高电流可以达到8A, 有效地保证了电路工作的稳定性,并具有很强的抗干扰能力。 4 结论本文设计并实现了一种较大功率直流电机驱动电路, 从器件的选择到系统的实现, 详细分析和探讨了电路设计过程中可能出现的各种问题, 并通过理论计算和工程实践解决上述问题。 该电路鲁棒性强, 实用性广, 尤其适合驱动较大功率的直流电机。
|