现代医疗仪器要走向智能化、个性化和网络化,身份识别是第一步,也是最关键的一步,而射频识别(Radio Frequency IDentification,RFID)威廉希尔官方网站
,作为新兴技的物联网关键威廉希尔官方网站
,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。基于此,设计了一种基于 RFID 和 ARM 实现用户信息采集和医疗器械操控的医疗器械智能控制系统。该系统目前主要应用于微波理疗仪、超声理疗仪等治疗型医疗仪器中,稍作改进也可应用于生理类、化学分析类等检测分析型医疗仪器中。
1 系统总体设计
系统采用 ARM 为主控制芯片,完成对射频识别芯片的控制、信息采集、数据传输以及对医疗器械的控制功能,采用MFRC522 实现对 IC 卡的读写功能,在 PC 机上运行用 VC 6.0开发的上位机软件实现对智能控制系统的控制和访问。
系统总体设计框图如图1所示。智能控制系统可在设定参数下自行读取用户信息后进行相应治疗作和记录,也可通过USB 口接入 PC 机后联网远程控制治疗仪器。IC 卡和治疗仪参数的设置与数据采集可通过用电脑软件来进行读写、管理。
图1 系统总体框图
系统采用模块化设计,分为非接触式 IC 卡、智能控制系统、治疗仪和安装了上位机软件的 PC 机。更换不同的上位机软件和治疗仪(或分析仪)就可以实现不同的医疗仪器的控制,本设计可以实现 50 万张 IC 卡的读写和信息存储。
2 系统硬件设计
系统硬件电路分为以 ARM 芯片为核心的控制子系统,以射频识别芯片为核心的 IC 卡读写模块,以 MSP430F149 芯片为核心的治疗仪控制模块以及治疗仪四大部分。
ARM 芯片采用 STM32F107VCT6 芯片,该芯片是意法半导体推出的全新 STM32互连型(ConnecTIvity)系列微控制器中的一款性能较强的产品,采用 ARM 32 位 Cortex-M3 核心,此芯片集成了各种高性能工业标准接口,同时拥有全速 USB(OTG)接口,两路 CAN 2.0B 接口,以及以太网10/100 MAC模块。治疗仪控制模块采用 MSP430F149 为主控芯片,该芯片是TI 公司推出的经典 MSP430 系列微控制器中的一款性能比较强的产品,16 位精简指令集 MCU,命令周期125 ns,此芯片集成了各种高性能工业标准接口,同时拥有 12 位 ADC,2 个 16 位计数器,片内比较器等内部资源,支持序列号、熔丝位烧写等加密功能,可以防止产品被逆向工程。采用这两款芯片可以提高系统集成度、稳定性,降低PCB 板面积和系统功耗,同时方便将来对系统进行升级。
2.1 非接触 IC 卡
非接触式 IC 卡又称射频卡,由 IC 芯片、感应天线组成,封装在一个标准的 PVC 卡片内,芯片及天线无任何外露部分。该威廉希尔官方网站
是世界上最近几年发展起来的一项新威廉希尔官方网站
,它成功地将射频识别威廉希尔官方网站
和 IC 卡威廉希尔官方网站
结合起来,结束了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。卡片在一定距离范围(通常为 5 ~10 mm)靠近读写器表面,通过无线电波的传递来完成数据的读写操作。非接触式 IC 卡是一种新型的智能卡,功能与接触 ID 卡、IC 卡一样,只是它无需电源,由接收天线从读卡器磁场感应取电,并工作运算数据,反馈到读卡器。
非接触型 IC 卡本身是无源体,当读写器对卡进行读写操作时,读写器发出的信号由两部分叠加组成:一部分是电源信号,该信号由卡接收后,与其本身的 L/C 回路产生谐振,产生一个瞬间能量来供给芯片工作。另一部分则是数据信号,通过接收芯片完成数据、修改、存储等,并返回给读写器。由非接触式 IC 卡所形成的读写系统,无论是硬件结构,还是操作过程都得到了很大的简化,同时借助于先进的管理软件、可脱机的操作方式,可使数据读写过程更为简单。
在系统上电后,ARM 芯片收到上位机软件通过 UART接口发出的控制信号和设置参数,对 IC 读写模块和治疗仪控制模块发出控制信号,对 IC 读写模块进行参数,并启动治疗仪实现相应的参数初始化。在没有收到上位机控制命令时,系统同样可以调用存储的参数进行系统初始化,或者通过对触摸屏进行手动操作设置系统参数。
在系统正常工作过程中,如果读取到用户 IC 卡,核对用户信息和消费信息,通过后即可进行相应的治疗,完成治疗后会根据治疗情况和用户反馈对治疗的效果进行相应的存储,以方便医生调阅,制定进一步的治疗方案。
3.1 ARM 程序设计
ARM程序设计采用开发环境IAR EWARM(IAR Embedded Workbench for ARM), 程序编写使用C语言。ARM程序流程如图 4 所示,主程序以对各个模块程序的调用实现功能,首先对系统的各个模块进行初始化,然后调用串口通讯模块程序读取上位机的操作指令和数据,然后根据相应的指令进行相应的操作,其后调用 IC 卡读写模块程序检测系统的读卡情况,如果有 IC 卡放入,则读取 IC 卡信息,但账户中仍有余额,则开启仪器进行相应操作,如果没有余额则显示余额不足。
图4 ARM 程序流程图
3.2 IC 卡读写程序设计
IC 卡读写模块程序模块包含对 IC 卡读写芯片进行复位和初始化,然后主控芯片读卡并进行防冲突处理,选择卡之后进行认证,认证为系统内部所发 IC 卡之后进行相应命令的操作:包含读卡、写卡、加值、减值、暂停等功能,最后进行是否改变分区的判断,若改变分区则重新进行认证,不改变分区则重新进行命令判断。
治疗仪控制模块程序工作过程为:首先对 MSP430F149的内部资源和 IO 口进行初始化并对医疗器械的工作状态进行初始化,然后检测系统的读卡情况,如果有 IC 卡放入,则读取 IC 卡信息,但账户中仍有余额,则开启医疗器械的工作,根据用户的设置或者调用设定好的治疗方案开始治疗,如果没有余额则显示余额不足。
本文设计了一种基于 RFID 和 ARM 架构的医疗器械智能控制系统。采用 STM32F107 控制 MFRC522 射频芯片与射频卡进行通信,利用 USB 转换芯片实现片机与 PC 机之间的串口通信。系统可通过射频识别卡识别患者身份信息和消费信息,实现对用户信息和消费信息的调取和存储,对相应患者调取对应的治疗方案,在治疗完成后收取一定的费用,并可根据患者的反馈记录治疗效果。系统采用模块化设计,修改治疗仪控制模块即可实现多种医疗仪器的智能控制系统 ;通过多个系统同时联网,并对上位机软件进行修改,可以实现多路治疗仪的操作和控制。