完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
1 系统总体设计方案
整个多路温度检测系统如图1所示,主要由计算机控制系统(上位机)、单片机测控系统(下位机)、多路温度传感器、功能模块系统等部分组成。本系统在需要对温度监控与测量的地方放置数字温度传感器,通过单总线将若干个温度传感器连接在一起。单片机按照单总线协议对各个传感器进行控制并采集温度信息,同时通过串口与上位机进行通信,同时单片机测控系统还可以增加显示电路部分、按键设置部分、数据存储部分等,可以在现场进行参数的显示与设置。上位机系统通过串口接收下位机上传的数据,通过上位机软件进行实施显示与控制。 2 系统硬件原理设计 2.1 主控电路设计 多路温度检测系统的主控电路采用的是现阶段广泛使用的AF89S51单片机作为核心控制芯片。该芯片为低功耗、高性能的8位单片机,片内有4KB可系统编程的Flash程序存储器,既可使用常规编程器也可在系统编程(ISP),片内有128B数据存储器,兼容标准8051指令系统及引脚,4.0~5.5V工作电压范围,全静态工作模式0Hz~33MHz,有低功耗空闲和掉电工作模式,看门狗及双数据指针。AT89S51单片机包括两个最基本电路:时钟电路与复位电路。本系统通过MAX232芯片与上位机RS-232串口连接。 2.2 显示电路设计 显示电路采用可以采用数码管显示和液晶显示两种方案。数码管显示的特点是显示亮度高、编程操作简单、成本低,但显示信息少、功耗大,如采用动态扫描占用CPU资源多,而液晶显示可以显示更多的信息,同时耗电量低,硬件接口也较为简单,本系统采用液晶显示模式,使用市场上常见的LCD1602液晶,P0口进行数据传输,P2口连接液晶的RS、RW、EN三个引脚。 2.3 按键电路设计 本系统按键采用触点式机械按键,由于其造价低、控制简单,普遍应用于电子产品中。按键与单片机接口采用非编码矩阵键盘,可以通过P1口的8个引脚连接4×4矩阵键盘,方便输入0~9数字以及其它功能键。 2.4 数据存储电路设计 数据存储芯片采用ATMEL公司AT24系列的2线串行EEPROM芯片,它是低功耗CMOS存储器,具有工作电压宽、擦写次数多、写入速度快等特点。存储芯片与单片机相连时,只需占用单片机的两个I/O端口线作为数据线和时钟线,如果只连接一片芯片,只需将地址线接地即可。 2.5 单总线温度传感器 温度传感器采用市场上应用广泛、接口简单的DS18B20温度传感器,其特点是采用单总线的接口方式,与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;测量温度范围宽、测量精度高,DS18B20的测量范围为-55℃~+125℃;多个DS18B20可以并联在一条单线上,实现多点测温;内置A/D转换器,直接输出9~12位被测温度值。本系统所有DS18B20的DQ引脚并连在一个I/O端口上,外接一个4.7~10kΩ的上拉电阻。 系统硬件原理图如图2所示。 3 系统软件程序设计 数字温度传感器DS18B20是采用由一条数据线实现数据双向传输的单总线协议方式。该协议定义了三种通信时序:初始化时序、读时序、写时序。而AT89S51单片机在硬件上并不支持单总线协议,因此必须采用软件方式模拟单总线协议时序来完成与DS18B20间的通信。 3.1 单总线协议 单总线协议的所有时序都是将主机作为主设备,单总线器件作为从设备。每次命令和数据的传输都是从主机主动写时序开始,如果要求单总线器件传输数据,则在进行写命令之后,主机启动读时序完成数据接收。数据和命令的传输都是以低位在先的串行方式进行。 3.1.1 初始化时序 主机首先发出一个480~960μs的低电平脉冲,然后释放总线变为高电平,并在随后的480 μs时间内对总线进行检测,如果有低电平出现,说明总线上有器件已做出应答。若无低电平出现一直都是高电平,说明总线上无器件应答。如图3所示。 3.1.2 写时序 写周期最少为60 μs,最长不超过120 μs。写周期一开始作为主机先把总线拉低1μs表示写周期开始。随后若主机想写0,则继续拉低电平最少60 μs直至写周期结束,然后释放总线为高电平。若主机想写1,在一开始拉低总线电平1 μs后就释放总线为高电平,一直到写周期结束。而作为从机的DS18B20则在检测到总线被拉低后等待15 μs,然后从15 μs到45 μs开始对总线采样,在采样期内总线为高电平则为1,若采样期内总线为低电平则为0。如图4所示。 3.1.3 读时序 对于读数据操作时序也分为读0时序和读1时序两个过程。读时隙是从主机把单总线拉低之后,在1μs之后就得释放单总线为高电平,以让DS18B20把数据传输到单总线上。DS18B20在检测到总线被拉低1 μs后,便开始送出数据,若是要送出0就把总线拉为低电平直到读周期结束。若要送出1则释放总线为高电平。主机在一开始拉低总线1μs后释放总线,然后在包括前面的拉低总线电平1μs在内的15 μs时间内完成对总线进行采样检测,采样期内总线为低电平则确认为0。采样期内总线为高电平则确认为1。完成一个读时序过程,至少需要60 μs才能完成。如图5所示。 3.2 软件程序设计 系统软件设计采用模块化设计方法,采用工程上使用比较普遍的C51语言编写程序。其中,采集温度时要对多个DS18B20进行操作,按照前面所述的操作时序,依照以下步骤对多个温度传感器进行温度采集:初始化;搜索ROM命令;匹配ROM命令;发送温度转换命令;读取温度值;判断是否访问完毕;依次循环。系缔程序流程图如图6所示。 4 结束语 本多路测温仪系统实用性强,能很好地巡回采集多路温度信息,并能及时传送给上位机,具有速度快、精度高、易扩展等优点。此系统所采用的传感器全为数字化芯片,大大简化了结构,降低了成本。本系统可以应用于农业温室大棚,可以实时监测植物生长环境变化,也可以应用于工业车间,测量各部分工作环境温度。结合此系统的设计思路,可以将传感器修改为其它种类的测量器件,采集不同种类的物理量,具有很强的推广价值。 |
|
|
|
只有小组成员才能发言,加入小组>>
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-11 05:37 , Processed in 0.699698 second(s), Total 76, Slave 58 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号