射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由 RF PA 将它放大到足够功率,经匹配网络,再由天线发射出去。
典型的阻抗匹配网络有 L 匹配、π形匹配和 T 形匹配。其中 L 匹配,其特点就是结构简单且只有两个自由度 L 和 C。一旦确定了阻抗变换比率和谐振频率,网络的 Q 值(带宽)也就确定了。π形匹配网络的一个优点就是不管什么样的寄生电容,只要连接到它,都可以被吸到网络中,这也导致了π形匹配网络的普遍应用,因为在很多的实际情况中,占支配地位的寄生元件是电容。T 形匹配,当电源端和负载端的寄生参数主要呈电感性质时,可用 T 形匹配来把这些寄生参数吸收入网络。
确保射频 PA 稳定的实现方式
每一个晶体管都是潜在不稳定的。好的稳定电路能够和晶体管融合在一起,形成一种“可持续工作”的模式。稳定电路的实现方式可划分为两种:窄带的和宽带的。
射频 PA 面临的测试挑战
功率放大器是无线通信系统中非常重要的组件,但他们本身是非线性的,因而会导致频谱增生现象而干扰到邻近通道,而且可能违反法令强制规定的带外(out-of-band)放射标准。这个特性甚至会造成带内失真,使得通信系统的误码率(BER)增加、数据传输速率降低。
在峰值平均功率比(PAPR)下,新的 OFDM 传输格式会有更多偶发的峰值功率,使得 PA 不易被分割。这将降低频谱屏蔽相符性,并扩大整个波形的 EVM 及增加 BER。为了解决这个问题,设计工程师通常会刻意降低 PA 的操作功率。很可惜的,这是非常没有效率的方法,因为 PA 降低 10%的操作功率,会损失掉 90%的 DC 功率。
现今大部分的 RF PA 皆支持多种模式、频率范围及调制模式,使得测试项目变得更多。数以千计的测试项目已不稀奇。波峰因子消减(CFR)、数字预失真(DPD)及包络跟踪(ET)等新威廉希尔官方网站
的运用,有助于将 PA 效能及功率效率优化,但这些威廉希尔官方网站
只会使得测试更加复杂,而且大幅延长设计及测试时间。增加 RF PA 的带宽,将导致 DPD 测量所需的带宽增加 5 倍(可能超过 1 GHz),造成测试复杂性进一步升高。
依趋势来看,为了增加效率,RF PA 组件及前端模块(FEM)将更紧密整合,而单一 FEM 则将支持更广泛的频段及调制模式。将包络跟踪电源供应器或调制器整合入 FEM,可有效地减少移动设备内部的整体空间需求。为了支持更大的操作频率范围而大量增加滤波器 / 双工器插槽,会使得移动设备的复杂度和测试项目的数量节节攀升。
射频 PA 的线性化威廉希尔官方网站
射频功率放大器的非线性失真会使其产生新的频率分量,如对于二阶失真会产生二次谐波和双音拍频,对于三阶失真会产生三次谐波和多音拍频。这些新的频率分量如落在通带内,将会对发射的信号造成直接干扰,如果落在通带外将会干扰其他频道的信号。为此要对射频功率放大器的进行线性化处理,这样可以较好地解决信号的频谱再生问题。