完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
频偏校正电路中通常需要根据给定相位产生余弦信号和正弦信号,其中最重要的实现威廉希尔官方网站
是CORDIC (Coordinate Rotation Digital Computer,坐标旋转数字计算机)算法。本文将详细分析CORDIC算法的原理及其FPGA实现方法。
1 CORDIC算法的基本原理 在直角坐标系统中,假设有一向量(x,y),按逆时针方向旋转φ度得到向量(x1,y1),则两向量的代数关系为: 在式(1)中,如果让旋转的角度φ满足条件:tanφ=±2-i,则式(1)中的乘法操作就可以转换为移位操作,从而很容易在FPGA中实现。图l所示是直角坐标下的向量旋转示意图。若需要旋转的角度为θ,那么就可以通过n次旋转一系列预定角度αi来完成。 (2)式中,di表示每次旋转的方向为αi。由于每次旋转都为预定角度值,所以cosαi为常数,而n次旋转中每次迭代的处理可表示为: 一般情况下,当旋转的次数足够大时,Ki一般为常数。由于在实现时,可在最终的计算结果中再乘以这一常数,所以,可以去掉式(3)中的Ki,这样,迭代方程就仅含移位和加法运算,从而大大的简化了FPGA的实现复杂性。由于还需要一个方程决定di的符号,引入变量zi表示每次旋转预定角度的累加值: 这样,CORDIC算法的迭代方程可表示为: 其最终结果为: 在频偏校正电路中,通常需要根据给定相位θ产生余弦信号cosθ和正弦信号sinθ。为了产生标准且无放大的正弦和余弦信号,可令输入向量的y分量(即yo)为0,x分量(即xo)为1/An,这样,式(6)就可简化为: 可见,经过上述处理就可将输入相位zo转换为标准的正弦和余弦信号。 |
|
|
|
2 CORDIC算法的FPGA实现
用FPGA实现CORDIC算法,最常用的方法有迭代算法和基于流水线的算法。CORDIC迭代算法只有一级迭代单元,在系统时钟的驱动下,可将迭代单元的输出作为本级的输入,并通过同一级迭代完成计算。迭代算法的硬件开销很小,但完成一次CORDIC运算需要多个时钟周期,其运算速度相对较慢。 在CORDIC流水线结构算法中,每一级CORDIC迭代运算都使用单独的运算单元,当流水线填满之后,每个时钟周期都马上会计算出一组结果,所以计算速度很快。 虽然流水线结构算法的计算速度很快,但其精度会受到流水线级数的限制。而要提高精度,就必须增加流水线级数,从而增大硬件开销,因此,流水线级数的选择要兼顾速度和精度的要求。 3 实现方案与仿真结果 3.1 实现方案 CORDIC算法的流水线流程图如图2所示,该方法采用7级流水线,故可大大提高计算速度。 3.2 仿真结果 基于CORDIC算法的正余弦信号发生器的仿真结果如图3所示,由图3可见,该算法可以实现标准的正弦波和余弦波,并可直接作为频偏校正单元。 4 结束语 本文通过对CORDIC算法的工作原理进行分析,给出了基于CORDIC算法和FPGA实现数字频率校正的实现方案。仿真结果证明,该方法可以实现标准的正弦波和余弦波信号,可以直接作为频偏校正单元来对数字频率信号进行校正。 |
|
|
|
只有小组成员才能发言,加入小组>>
2919 浏览 3 评论
27723 浏览 2 评论
3494 浏览 2 评论
3995 浏览 4 评论
基于采用FPGA控制MV-D1024E系列相机的图像采集系统设计
2339 浏览 3 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-4 14:06 , Processed in 0.505686 second(s), Total 49, Slave 40 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号