完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
斯巴拓传感器----您身边的力传感专家 传感器(英文名称:transducer/sensor)是一种检测装置,往往又被称为换能器,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:智能化、多功能化、系统化、网络化、微型化、数字化。传感器实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常我们常见的几大类传感器,压力传感器、湿度传感器、温湿度传感器、流量传感器、液位传感器、超声波传感器、浸水传感器、照度传感器、 霍尔传感器、光电传感器等十大类传感器。基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 斯巴拓传感器----您身边的力传感专家! 压力传感器一、压电压力传感器 压电式压力传感器主要基于压电效应,利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。压电效应就是在石英上发现的。 二、压阻压力传感器 压阻压力传感器主要基于压阻效应,压阻效应是用来描述材料在受到机械式应力下所产生的电阻变化。不同于上述压电效应,压阻效应只产生阻抗变化,并不会产生电荷。大多数金属材料与半导体材料都被发现具有压阻效应。其中半导体材料中的压阻效应远大于金属。由于硅是现今集成电路的主要,以硅制作而成的压阻性元件的应用就变得非常有意义。的电阻变化不单是来自与应力有关的几何形变,而且也来自材料本身与应力相关的电阻,这使得其程度因子大于金属数百倍之多。N型硅的电阻变化主要是由于其三个导带谷对的位移所造成不同迁移率的导带谷间的载子重新分布,进而使得电子在不同流动方向上的迁移率发生改变。其次是由于来自与导带谷形状的改变相关的等效质量的变化。在P型硅中,此现象变得更复杂,而且也导致等效质量改变及电洞转换。 三、电容式压力传感器 电容式压力传感器是一种利用电容作为敏感元件,将被测压力转换成电容值改变的压力传感器。这种压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。 四、电磁压力传感器 主要包括电感压力传感器、霍尔压力传感器、电涡流压力传感器等。 1、电感压力传感器 ①电感式压力传感器是由于磁性材料和磁导率不同,当压力作用于膜片时,气隙大小发生改变,气隙的改变影响线圈电感的变化,处理电路可以把这个电感的变化转化成相应的信号输出,从而达到测量压力的目的。该种压力传感器按磁路变化可以分为两种:变磁阻和变磁导。电感式压力传感器的优点在于灵敏度高、测量范围大;缺点就是不能应用于高频动态环境。 ②变磁阻式压力传感器主要部件是铁芯跟膜片。它们跟之间的气隙形成了一个磁路。当有压力作用时,气隙大小改变,即磁阻发生了变化。如果在铁芯线圈上加一定的电压,电流会随着气隙的变化而变化,从而测出压力。 ③在磁通密度高的场合,铁磁材料的导磁率不稳定,这种情况下可以采用变磁导式压力传感器测量。变磁导式压力传感器用一个可移动的磁性元件代替铁芯,压力的变化导致磁性元件的移动,从而磁导率发生改变,由此得出压力值。 2、霍尔压力传感器 ①霍尔压力传感器是基于某些半导体材料的霍尔效应制成的。霍尔效应是指当固体导体放置在一个磁场内,且有电流通过时,导体内的电荷载子受到洛伦兹力而偏向一边,继而产生电压(霍尔电压)的现象。电压所引致的电场力会平衡洛伦兹力。通过霍尔电压的极性,可证实导体内部的电流是由带有负电荷的粒子(自由电子)之运动所造成。 ②在导体上外加与电流方向垂直的磁场,会使得导线中的电子受到洛伦兹力而聚集,从而在电子聚集的方向上产生一个电场,此电场将会使后来的电子受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子能顺利通过不会偏移,此称为霍尔效应。而产生的内建电压称为霍尔电压。 ③当磁场为一交变磁场时,霍尔电动势也为同频率的交变电动势,建立霍尔电动势的时间极短,故其响应频率高。理想霍尔元件的材料要求要有较高的电阻率及载流子迁移率,以便获得较大的霍尔电动势。常用霍尔元件的材料大都是半导体,包括N型硅(Si)、锑化铟(InSb)、砷化铟InAs)、锗(Ge)、砷化镓GaAs)及多层半导体质结构材料,N型硅的霍尔系数、温度稳定性和线性度均较好,砷化镓温漂小,目前应用。 3、电涡流压力传感器 基于电涡流效应的压力传感器。电涡流效应是由一个移动的磁场与金属导体相交,或是由移动的金属导体与磁场垂直交会所产生。简而言之,就是电磁感应效应所造成。这个动作产生了一个在导体内循环的电流。电涡流特性使电涡流检测具有零频率响应等特性,因此电涡流压力传感器可用于静态力的检测。 五、振弦式压力传感器 振弦式压力传感器属于频率敏感型传感器,这种频率测量具有想当高的准确度,因为时间和频率是能准确测量的物理量参数,而且频率信号在传输过程中可以忽略电缆的电阻、电感、电容等因素的影响。同时,振弦式压力传感器还具有较强的抗干扰能力,零点漂移小、温度特性好、结构简单、分辨率高、性能稳定,便于数据传输、处理和存储,容易实现仪表数字化,所以振弦式压力传感器也可以作为传感威廉希尔官方网站
发展的方向之一。 振弦式压力传感器的敏感元件是拉紧的钢弦,敏感元件的固有频率与拉紧力的大小有关。弦的长度是固定的,弦的振动频率变化量可用来测算拉力的大小,即输入是力信号,输出的是频率信号。振弦式压力传感器分为上下两个部分组成,下部构件主要是敏感元件组合体。上部构件是铝壳,包含一个电子模块和一个接线端子,分成两个小室放置,这样在接线时就不会影响电子模块室的密封性。 斯巴拓传感器----您身边的力传感专家! 湿度传感器 1、氯化锂湿度传感器 (1)电阻式氯化锂湿度计 第一个基于电阻-湿度特性原理的氯化锂电湿敏元件是美国标准局的F.W.Dunmore研制出来的。这种元件具有较高的精度,同时结构简单、价廉,适用于常温常湿的测控等一系列优点。 氯化锂元件的测量范围与湿敏层的氯化锂浓度及其它成分有关。单个元件的有效感湿范围一般在20%RH 以内。例如0.05%的浓度对应的感湿范围约为(80~100)%RH ,0.2%的浓度对应范围是(60~80)%RH 等。由此可见,要测量较宽的湿度范围时,必须把不同浓度的元件组合在一起使用。可用于全量程测量的湿度计组合的元件数一般为5个,采用元件组合法的氯化锂湿度计可测范围通常为(15~100)%RH,国外有些产品声称其测量范围可达(2 ~100)%RH 。 (2)露点式氯化锂湿度计 露点式氯化锂湿度计是由美国的 Forboro 公司首先研制出来的,其后我国和许多国家都做了大量的研究工作。这种湿度计和上述电阻式氯化锂湿度计形式相似,但工作原理却完全不同。简而言之,它是利用氯化锂饱和水溶液的饱和水汽压随温度变化而进行工作的。 2、碳湿敏元件 碳湿敏元件是美国的 E.K.Carver 和 C.W.Breasefield 于1942年首先提出来的,与常用的毛发、肠衣和氯化锂等探空元件相比,碳湿敏元件具有响应速度快、重复性好、无冲蚀效应和滞后环窄等优点,因之令人瞩目。我国气象部门于70年代初开展碳湿敏元件的研制,并取得了积极的成果,其测量不确定度不超过±5%RH ,时间常数在正温时为2~3s,滞差一般在7%左右,比阻稳定性亦较好。 3、氧化铝湿度计 氧化铝传感器的突出优点是,体积可以非常小(例如用于探空仪的湿敏元件仅90μm厚、12mg重),灵敏度高(测量下限达-110℃露点),响应速度快(一般在 0.3s 到 3s 之间),测量信号直接以电参量的形式输出,大大简化了数据处理程序,等等。另外,它还适用于测量液体中的水分。如上特点正是工业和气象中的某些测量领域所希望的。因此它被认为是进行高空大气探测可供选择的几种合乎要求的传感器之一。也正是因为这些特点使人们对这种方法产生浓厚的兴趣。然而,遗憾的是尽管许多国家的专业人员为改进传感器的性能进行了不懈的努力,但是在探索生产质量稳定的产品的工艺条件,以及提高性能稳定性等与实用有关的重要问题. 上始终未能取得重大的突破。因此,到目前为止,传感器通常只能在特定的条件和有限的范围内使用。近年来,这种方法在工业中的低霜点测量方面开始崭露头角。 4、陶瓷湿度传感器 在湿度测量领域中,对于低湿和高湿及其在低温和高温条件下的测量,到目前为止仍然是一个薄弱环节,而其中又以高温条件下的湿度测量威廉希尔官方网站 最为落后。以往,通风干湿球湿度计几乎是在这个温度条件下可以使用的唯一方法,而该法在实际使用中亦存在种种问题,无法令人满意。另一方面,科学威廉希尔官方网站 的进展,要求在高温下测量湿度的场合越来越多,例如水泥、金属冶炼、食品加工等涉及工艺条件和质量控制的许多工业过程的湿度测量与控制。因此,自60年代起,许多国家开始竟相研制适用于高温条件下进行测量的湿度传感器。 考虑到传感器的使用条件,人们很自然地把探索方向着眼于既具有吸水性又能耐高温的某些无机物上。实践已经证明,陶瓷元件不仅具有湿敏特性,而且还可以作为感温元件和气敏元件。这些特性使它极有可能成为一种有发展前途的多功能传感器。寺日、福岛、新田等人在这方面已经迈出了颇为成功的一步。他们于 1980 年研制成称之为“湿瓷 - Ⅱ型”和“湿瓷 - Ⅲ型”的多功能传感器。前者可测控温度和湿度,主要用于空调,后者可用来测量湿度和诸如酒精等多种有机蒸气,主要用于食品加工方面。 斯巴拓传感器----您身边的力传感专家! 流量传感器 一、叶片式 叶片式空气流量传感器的结构、工作原理及检测 传统的波许L型汽油喷射系统及一些中档车型采用这种叶片式空气流量传感器。由空气流量计和电位计两部 分组成。空气流量计在进气通道内有一个可绕轴摆动的旋转翼片(测量片),作用在轴上的卷簧可使测量片关闭进气通路。发动机工作时,进气气流经过空气流量计推动测量片偏转,使其开启。测量片开启角度的大小取决于进气气流对测量片的推力与测量片轴上卷簧弹力的平衡状况。进气量的大小由驾驶员操纵节气门来改变。进气量愈大,气流对测量片的推力愈大,测量片的开启角度也就愈大。在测量片轴上连着一个电位计。电位计的滑动臂与测量片同轴同步转动,把测量片开启角度的变化(即进气量的变化)转换为电阻值的变化。电位计通过导线、连接器与ECU连接。ECU根据电位计电阻的变化量或作用在其上的电压的变化量,测得发动机的进气量,在叶片式空气流量传感器内,通常还有一电动汽油泵开关。当发动机起动运转时,测量片偏转,该开关触点闭合,电动汽油泵通电运转;发动机熄火后,测量片在回转至关闭位置的同时,使电动汽油泵开关断开。此时,即使点火开关处于开启位置,电动汽油泵也不工作。 流量传感器内还有一个进气温度传感器,用于测量进气温度,为进气量作温度补偿。 叶片式空气流量传感器导线连接器一般有7个端子。但也有将电位计内部的电动汽油泵控制触点开关取消后,变为5个端子的。出了日产和丰田车用叶片式空气流量传感器导线连接器端子的“标记”。其端子“标记”一般标注在连接器的护套上。 二、涡街式 涡街流量传感器主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。无可动机械零件,因此可靠性高,维护量小。仪表参数能长期稳定。涡街流量传感器采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的测量仪器。flow-meters.cn涡街流量传感器是基于卡门涡街原理研制出来的。在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡。 设旋涡的发生频率为f,被测介质平均流速为 ,旋涡发生体迎流面宽度为d,表体通径为D,即可得到以下关系式: f=SrU1/d=SrU/md ⑴ 式中 U1--旋涡发生体两侧平均流速,m/s; Sr--斯特劳哈尔数; m--旋涡发生体两侧弓形面积与管道横截面面积之比 管道内体积流量qv为 qv=πD2U/4=πD2mdf/4Sr ⑵ K=f/qv=[πD2md/4Sr]-1 ⑶ 式中 K--流量计的仪表系数,脉冲数/m3(P/m3)。 由上式可以看出流量传感器的输出频率只于旋涡发生体及管道的形状尺寸等有关。 三、卡门涡旋式 卡门涡旋式空气流量传感器的结构和工作原理。在进气管道正中间设有一流线形或三角形的涡流发生器,当空气流经该涡流发生器时,在其后部的气流中会不断产生一列不对称却十分规则的被称为卡门涡流的空气涡流。 测量单位时间内旋涡数量的方法有反光镜检出式和超声波检出式两种。是反光镜检出式卡门涡旋流量传感器,其内有一只发光二极管和一只光敏三极管。发光二极管发出的光束被一片反光镜反射到光敏三极管上,使光敏三极管导通。反光镜安装在一个很薄的金属簧片上。金属簧片在进气气流旋涡的压力作用下产生振动,其振动频率与单位时间内产生的旋涡数量相同。由于反光镜随簧片一同振动,因此被反射的光束也以相同的频率变化,致使光敏三极管也随光束以同样的频率导通、截止。ECU根据光敏三极管导通、截止的频率即可计算出进气量。凌志小轿车即用了这种型式的卡门涡旋式空气流量传感器。 超声波检出式卡门涡旋式空气流量传感器。在其后半部的两侧有一个超声波发射器和一个超声波接收器。在发动机运转时,超声波发射器不断地向超声波接收器发出一定频率的超声波。当超声波通过进气气流到达接收器时,由于受气流中旋涡的影响,使超声波的相位发生变化。ECU根据接收器测出的相应变化的频率,计算出单位时间内产生的旋涡的数量,从而求得空气流速和流量,然后根据该信号确定基准空气量和基准点火提前角。 四、热线式 热线式空气流量传感器的基本结构由感知空气流量的白金热线(铂金属线)、根据进气温度进行修正的温度补偿电阻(冷线)、控制热线电流并产生输出信号的控制线路板以及空气流量传感器的壳体等元件组成。根据白金热线在壳体内的安装部位不同,热线式空气流量传感器分为主流测量、旁通测量方式两种结构形式。图 18所示是采用主流测量方式的热线式空气流量传感器的结构图。它两端有金属防护网,取样管置于主空气通道中央,取样管由两个塑料护套和一个热线支承环构成。热线线径为70μm的白金丝(RH),布置在支承环内,其阻值随温度变化,是惠斯顿电桥电路的一个臂。热线支承环前端的塑料护套内安装一个白金薄膜电阻器,其阻值随进气温度变化,称为温度补偿电阻(RK),是惠斯顿电桥电路的另一个臂。热线支承环后端的塑料护套上粘结着一只精密电阻(RA)。此电阻能用激光修整,也是惠斯顿电桥的一个臂。该电阻上的电压降即为热线式空气流量传感器的输出信号电压。惠斯顿电桥还有一个臂的电阻RB安装在控制线路板上。 工作原理:热线温度由混合集成电路A保持其温度与吸入空气温度相差一定值,当空气质量流量增大时,混合集成电路A使热线通过的电流加大,反之,则减小。这样,就使得通过热线RH的电流是空气质量流量的单一函数,即热线电流IH随空气质量流量增大而增大,或随其减小而减小,一般在50-120mA之间变化。 液位传感器分类 液位传感器是一种常用的测量仪器,具有测量精准、维护简便、使用灵活、可靠性高、耐用性强等多种的优点,被广泛的应用于多个行业当中。液位传感器的种类是比较多的,接下来艾驰商城小编就来为大家介绍液位传感器三大类型,希望可以帮助到大家。 1、浮球式液位传感器:由行业产品磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。一般磁性浮球的比重小于0.5,可漂于液面之 上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20ma或其它 电子商务标准信号输出。 2、浮筒式液位传感器:是将磁性浮球改为浮筒,浮筒式液位传感器是利用微小的金属膜应变传感威廉希尔官方网站
来测量液体的液位、界位或密度的。 3、静压式液位传感器:是利用防爆流量计液体静压力的测量原理工作。一般选用硅压力测压传感器将测量到的压力转换成电信号,之后再经放大电路放大和补偿电路补偿,最后以4~20ma或0~10ma电流方式输出。 斯巴拓传感器----您身边的力传感专家! 超声波传感器 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。 超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。在空气中传播超声波,其频率较低,一般为几十KHZ,而在固体、液体中则频率可用得较高。在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。 超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。这里仅介绍小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25KHZ及40-45KHZ。这类传感器适用于测距、遥控、防盗等用途。该种有T/R-40-60,T/R-40-12等。另有一种密封式超声波传感器(MA40EI型),它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。 1、遥控开关超声波遥控开关可控制家用电器及照明灯。采用小型超声波传感器(Φ12-Φ16),工作频率在40KHZ,遥控距离约10米。遥控器的发送,这是由555时基电路组成的振荡器,调整10KΩ电位器,使振荡频率为40KHZ,传感器接在③脚,接下按钮时,发送出超声波,接收电路。电源由220V经电容降压、整流、滤波、稳压后获得12V工作电压。由于是非隔离电源,要整个电路用塑料外壳封装,以防触电(在调试时也应注意)。信号由超声波接收器接收,经Q1、Q2放大(L、C谐振槽路调谐在40KHZ)。放大后的信号去触发由Q3、Q4组成的双稳态电路,Q5及LED作为触发隔离,并可发光显示。由于双稳态在开机时有随机性,故加一清零按钮。Q5输出的触发信号使双向可控硅导通,负载接通。要负载断路,则要按一次发送钮。 2、液位指示及控制器由于超声波在空气中有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。A点与上图A点相连接。当液位低于设置值时,比较器输出为低电平。BG不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控制)。 斯巴拓传感器----您身边的力传感专家! 水浸传感器 水浸传感器是常见的一种仪器设备,常用于机房漏水检测,漏水水浸传感器是根据光学原来来提供数据信息的,它具有准确,可靠的特点。但是漏水水浸传感器也不是只有一种,他分为接触式水浸探测器以及非接触式水浸探测器两大类。 其中接触式水浸探测器主要是利用液体导电原理来进行漏水检测的。一般情况下两极探头于空气绝缘;而在有浸水的情况下探头就会导通,漏水水浸传感器就会输出干接点的信号。当探头浸水高度差不多达到1毫米的时候,传感器就会产生报警信号。接触式水浸探测器采用挂重设计,对于部署更加方便。 另外一种就是非接触式水浸探测器,他主要是利用光不同介质截面的折射与反射原理进行检测。塑料半球内放置有LED以及光电接收器,当探测器置于空气中时,由于全反射的原理很大部分LED光子被光电接收器接收;当靠近半球表面时,因为光的折射,光电接收器接收到的LED光子就会有所减少,从而也会导致输出的改变。非接触式水浸探测器主要适合住部署在一般腐蚀导电液体泄露地点。 斯巴拓传感器----您身边的力传感专家! 照度传感器 照度传感器是以光电效应为基础,将光信号转换成电信号的装置。早期照度传感器的光敏元件采用光敏电阻,现基本都改用半导体材料制成的光敏二极管。 工作原理 根据爱因斯坦的光子假说:光是一粒一粒运动着的粒子流,这些光粒子称为光子。每一个光子具有一定的能量,其大小等于普朗克常数h乘以光的频率γ。所以,不同频率的光子具有不同的能量。光的频率越高,其光子能量就越大。 光线照射在某些物体上,使电子从这些物体表面逸出的现象称为外光电效应,也称光电发射。逸出来的电子称为光电子。光电效应一般分为外光电效应、光电导效应和光伏效应三类,根据这些效应可制成不同的光电转换器件(称为光敏元件)。照度传感器是以光伏特效应来工作的。 在光照下,若入射光子的能量大于禁带宽度,半导体PN结附近被束缚的价电子吸收光子能量,受激发跃迁至导带形成自由电子,而价带则相应的形成自由空穴。这些电子一空穴对,在内电场的作用下,空穴移向P区,电子移向N区,使P区带正电,N区带负电,于是在P区与N区之间产生电压,称为光生电动势,这就是光伏效应。利用光伏效应制成的敏感元件有光电池、光敏二极管和光敏三极管等,其应用极为广泛。 利用光敏二极管的光伏效应可以制作照度传感器。光敏二极管的结构与一般二极管相似,装在透明玻璃外壳中,它的PN结装在管顶,可直接受到光照射,光敏二极管在电路中一般是处于反向工作状态。光敏二极管在电路中处于反向偏置,在没有光照射时,反向电阻很大,反向电流很小,此反向电流称为暗电流。反向电流小的原因是在PN结中,P型中的电子和N型中的空穴(少数载流子)很少。当光照射在PN结上,光子打在PN结附近,使PN结附近产生光生电子和光生空穴对,使少数载流子的浓度大大增加,因此通过PN结的反向电流也随着增加。如果入射光照度变化,光生电子一空穴对的浓度也相应变动,通过外电路的光电流强度也随之变动,可见光敏二极管能将光信号转换为电信号输出。 折叠特光照度传感器的结构及性 国内某公司生产的On9668光控阀值可调的光电集成传感器就可做成一个开关型可见光照度传感器。其典型入射波长为λp=520nm,内置双敏感元接收器,可见光范围内高度敏感,光开关阀值通过外置电阻线性可调,直接输出高、低电平,外围电路简单。下图是开关型可见光照度传感器的原理图。 电气特性如下: (1)暗电流小,低照度响应,灵敏度高。 (2)光控阀值通过外置电阻线性可调,直接输出高、低电平,外围电路简单。 (3)内置双敏感元,自动衰减近红外,光谱响应接近人眼函数曲线。 (4)内置微信号CMOS放大器、高精度电压源和修正电路,输出电流可达30 mA。 (5)工作电压范围宽,温度稳定性好。 (6)可选光学纳米材料封装,可见光透过,紫外线截止,近红外相对衰减,增强光学滤波效果。 折叠照度传感器的应用 照度传感器根据环境灯光的变化,采用电子元器件将可见光转化成电信号,从而控制照明系统来保证使作业面的照度在一定范围内。当作业面的照度高于预设的照度值,关闭或调暗采光系统;当作业面的照度低于预设的照度值,开启或调亮采光系统。通常,前一个预设的照度值高于后一个预设的照度值,利用该"死区"以免频繁地开关照明设备。 照度传感器主要用于对天然采光的补偿或利用,若能从窗户或天空获得充足的自然光,则可以关闭电灯或降低电力消耗,这多见于玻璃幕墙建筑内办公室照明的控制。或者发送信号启动电动窗帘、遮阳幕布等,或者调节遮阳格栅的角度,来降低自然采光产生的照度,这样既可利用日光在室内产生的光影变化效果和色温变化效果,又可以保障照度控制在一定范围内,维持室内光环境的和谐,这都需要考虑与诸如电动窗帘等设备的配合,可在一些利用自然采光的展览厅见到。 照度传感器大多设有延时装置,以免天空中云的变化带来自然采光的变化,而导致照明系统控制的频繁变化,这在多云的天气尤显得重要。 采用单个照度传感器设置其控制区域时,应注意以下事项: (1)控制区内作业活动内容、照度要求和环境相同; (2)控制区内天然采光的条件相同; (3)控制区域连续,没有隔断或墙体。 在室内,照度传感器的安装位置有两种:一种是直接安装在工作面上,但需要保证探头不被作业设备损伤,或者按照通常的做法,安装在天花板上,朝向作业面;另一种安装位置是朝向采光窗,直接测量自然采光。照度传感器也可以安装在灯具内,成为灯具的一部分,还可以安装在远离所控制的灯具回路的天花板上。当照度传感器用于室外环境中时,在北半球则多朝向北方.以免太阳光的直射,从而保证比较好的恒定照度。同时需要指出的是,由于室外照度传感器的灵敏度和可调节性比较低,所以不能与室内的照度传感器互换。 斯巴拓传感器----您身边的力传感专家! 霍尔传感器 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化威廉希尔官方网站
、检测威廉希尔官方网站
及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 原理由霍尔效应的原理知,霍尔电势的大小取决于:Rh为霍尔常数,它与半导体材质有关;I为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。 对于一个给定的霍尔器件,当偏置电流 I 固定时,UH将完全取决于被测的磁场强度B。 霍尔效应 一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流 I 的输入端,另两根是霍尔电压的输出端。如果两输出端构成外回路,就会产生霍尔电流。一般地说,偏置电流的设定通常由外部的基准电压源给出;若精度要求高,则基准电压源均用恒流源取代。为了达到高的灵敏度,有的霍尔元件的传感面上装有高导磁系数的镀膜合金;这类传感器的霍尔电势较大,但在0.05T左右出现饱和,仅适用在低量限、小量程下使用。 在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压。 工作原理磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。 霍尔效应传感器 1-霍尔半导体元件 2-永久磁铁 3-挡隔磁力线的叶片 霍尔效应霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图一所示的半导体试样,若在X方向通以电流Is,在Z方向加磁场B,则在Y方向即试样A,A′电极两侧就开始聚积异号电荷而产生相应的附加电场。电场的指向取决定于测试样品的电类型。显然,该电场是阻止载流子继续向侧面偏移。 当载流子所受的横向电场力eEH与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 ⑴ 其中EH为霍尔电场,V是载流子在电流方向上的平均漂移速度。设试样的宽为b,厚度为d,载流子浓度为n,则 ⑵ 由⑴、⑵两式可得 ⑶ 即霍尔电压VH(A、A′电极之间的电压)与ISB乘积正比与试样厚度d成反比。比例系数 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,只要测出 VH(伏)以及知道IIs(安)、B(高斯)和d(厘 米)可按下式计算RH(厘米3/库仑) 霍尔传感器 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息威廉希尔官方网站
等领域得到广泛的应用。 霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。 (一)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。开关型霍尔传感器还有一种特殊的形式,称为锁键型霍尔传感器。 (二)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。 线性霍尔传感器又可分为开环式和闭环式。闭环式霍尔传感器又称零磁通霍尔传感器。线性霍尔传感器主要用于交直流电流和电压测量。 开关型其中Bnp为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度。当外加的磁感应强度超过动作点Bnp时,传感器输出低电平,当磁感应强度降到动作点Bnp以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bnp与BRP之间的滞后使开关动作更为可靠。 锁键型当磁感应强度超过动作点Bnp时,传感器输出由高电平跃变为低电平,而在外磁场撤消后,其输出状态保持不变(即锁存状态),必须施加反向磁感应强度达到BRP时,才能使电平产生变化。 线性型输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。 开环式电流传感器 由于通电螺线管内部存在磁场,其大小与导线中的电流成正比,故可以利用霍尔传感器测量出磁场,从而确定导线中电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。 霍尔电流传感器工作原理,标准圆环铁芯有一个缺口,将霍尔传感器插入缺口中,圆环上绕有线圈,当电流通过线圈时产生磁场,则霍尔传感器有信号输出。 闭环式电流传感器 磁平衡式电流传感器也叫霍尔闭环电流传感器,也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿, 从而使霍尔器件处于检测零磁通的工作状态。 磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上, 所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。 这一电流再通过多匝绕组产生磁场 ,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场, 使霍尔器件的输出逐渐减小。当与Ip与匝数相乘 所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用 ,此时可以通过Is来平衡。被测电流的任何变化都会破坏这一平衡。 一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。 1、 霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波; 2、 霍尔传感器 2、 原边电路与副边电路之间有良好的电气隔离,隔离电压可达9600Vrms; 3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量; 4、线性度好:优于0.1%; 5、宽带宽:高带宽的电流传感器上升时间可小于1μs;但是,电压传感器带宽较窄,一般在15kHz以内,6400Vrms的高压电压传感器上升时间约500uS,带宽约700Hz。 6、测量范围:霍尔传感器为系列产品,电流测量可达50KA,电压测量可达6400V。 霍尔电流传感器使用时,需遵循以下注意事项: 1、为了得到较好的动态特性和灵敏度,必须注意原边线圈和副边线圈的耦合,要耦合得好,最好用单根导线且导线完全填满霍尔传感器模块孔径。 2、使用中当大的直流电流流过传感器原边线圈,且次级电路没有接通电源|稳压器或副边开路,则其磁路被磁化,而产生剩磁,影响测量精度(故使用时要先接通电源和测量端M),发生这种情况时,要先进行退磁处理。其方法是次边电路不加电源,而在原边线圈中通一同样等级大小的交流电流并逐渐减小其值。 3、霍尔传感器都具有较强的抗外磁场干扰能力,但是,为了获得较高的测量准确度,当有较强的磁场干扰时,要采取适当的措施来解决。通常方法有: · 调整模块方向,使外磁场对模块的影响最小; · · 在模块上加罩一个抗磁场的金属屏蔽罩。 · 4、测量的最佳精度是在额定值下得到的,当被测电流远低于额定值时,要获得最佳精度,原边可使用多匝,但是,需要注意导线的空间位置(参照第一条)。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 位移测量两块永久磁铁同极性相对放置,将线性型霍尔传感器置于中间,其磁感应强度为零,这个点可作为位移的零点,当霍尔传感器在Z轴上作△Z位移时,传感器有一个电压输出,电压大小与位移大小成正比。 力测量如果把拉力、压力等参数变成位移,便可测出拉力及压力的大小,按这一原理可制成的力传感器。 角速度测量在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。 线速度测量如果把开关型霍尔传感器按预定位置有规律地布置在轨道上,当装在运动车辆上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号的分布可以测出车辆的运动速度。 注意事项霍尔传感器(1)电流传感器必须根据被测电流的额定有效值适当选用不同的规格的产品。被测电流长时间超额,会损坏末极功放管(指磁补偿式),一般情况下,2倍的过载电流持续时间不得超过1分钟。 (2)电压传感器必须按产品说明在原边串入一个限流电阻R1,以使原边得到额定电流,在一般情况下,2倍的过压持续时间不得超过1分钟。 (3)电流电压传感器的最佳精度是在原边额定值条件下得到的,所以当被测电流高于电流传感器的额定值时,应选用相应大的传感器;当被测电压高于电压传感器的额定值时,应重新调整限流电阻。当被测电流低于额定值1/2以下时,为了得到最佳精度,可以使用多绕圈数的办法。 (4)绝缘耐压为3KV的传感器可以长期正常工作在1KV及以下交流系统和1.5KV及以下直流系统中,6KV的传感器可以长期正常工作在2KV及以下交流系统和2.5KV及以下直流系统中,注意不要超压使用。 (5)在要求得到良好动态特性的装置上使用时,最好用单根铜铝母排并与孔径吻合,以大代小或多绕圈数,均会影响动态特性。 (6)在霍尔电流传感器大电流直流系统中使用时,因某种原因造成工作电源开路或故障,则铁心产生较大剩磁,是值得注意的。剩磁影响精度。退磁的方法是不加工作电源,在原边通一交流并逐渐减小其值。 (7)传感器抗外磁场能力为:距离传感器5~10cm一个超过传感器原边电流值2倍的电流,所产生的磁场干扰可以抵抗。三相大电流布线时,相间距离应大于5~10cm。 (8)为了使传感器工作在最佳测量状态,应使用图1-10介绍的简易典型稳压电源。 (9)传感器的磁饱和点和电路饱和点,使其有很强的过载能力,但过载能力是有时间限制的,试验过载能力时,2倍以上的过载电流不得超过1分钟。 (10)原边电流母线温度不得超过85℃,这是ABS工程塑料的特性决定的,用户有特殊要求,可选高温塑料做外壳。 霍尔电压传感器和霍尔电流传感器主要适用于工业控制领域的电压和电流测量。由于传感器一般不提供角差指标,对于需要准确测量交流电功率的场合,应对其角差指标进行验证,这一点需特别注意。工频电量测量可用互感器替代,变频电量测量可用电压、电流组合式的变频功率传感器替代。 霍尔传感器威廉希尔官方网站
应用于汽车工业 霍尔传感器威廉希尔官方网站
在汽车工业中有着广泛的应用,包括动力、车身控制、牵引力控制以及防抱死制动系统。为了满足不同系统的需要,霍尔传感器有开关式、模拟式和数字式传感器三种形式。 霍尔传感器可以采用金属和半导体等制成,效应质量的改变取决于导体的材料,材料会直接影响流过传感器的正离子和电子。制造霍尔元件时,汽车工业通常使用三种半导体材料,即砷化镓、锑化铟以及砷化铟。最常用的半导体材料当属砷化铟。 霍尔传感器的形式决定了放大电路的不同,其输出要适应所控制的装置。这个输出可能是模拟式,如加速位置传感器或节气门位置传感器,也可能是数字式。如曲轴或凸轮轴位置传感器。 当霍尔元件用于模拟式传感器时,这个传感器可以用于空调系统中的温度表或动力控制系统中的节气门位置传感器。霍尔元件与微分放大器连接,放大器与NPN晶体管连接。磁铁固定在旋转轴上,轴在旋转时,霍尔元件上的磁场加强。其产生的霍尔电压与磁场强度成比例。 当霍尔元件用于数字信号时,例如曲轴位置传感器、凸轮轴位置传感器或车速传感器,必须首先改变电路。霍尔元件与微分放大器连接,微分放大器与施密特触发器连接。在这种配置中。传感器输出一个开或关的信号。在多数汽车电路中,霍尔传感器是电流吸收器或者使信号电路接地。要完成这项工作,需要一个NPN晶体管与施密特触发器的输出连接。磁场穿过霍尔元件,一个触发器轮上的叶片在磁场和霍尔元件之间通过。 霍尔传感器应用于出租车计价器 霍尔传感器在出租车计价器上的应用:通过安装在车轮上的霍尔传感器A44E检测到的信号,送到单片机,经处理计算,送给显示单元,这样便完成了里程计算。检测原理,P3.2口作为信号的输入端,内部采用外部中断0,车轮每转一圈(设车轮的周长是1 m),霍尔开关就检测并输出信号,引起单片机的中断,对脉冲计数,当计数达到1 000次时,也就是1 km,单片机就控制将金额自动增加。 每当霍尔传感器输出一个低电平信号就使单片机中断一次,当里程计数器对里程脉冲计满1 000次时,就有程序将当前总额累加,使微机进入里程计数中断服务程序中。在该程序中,需要完成当前行驶里程数和总额的累加操作,并将结果存入里程和总额寄存器中。 霍尔电流传感器在变频器中的应用 在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的独特优点,所以在变频器中也发挥了非常重要的作用。 在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间短于1μs,因此,出现过载短路时,在晶体管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 霍尔电流传感器按其工作模式可分为直接测量式和零磁通式,在变频器中由于需要精准的控制及计算,因此选用了零磁通方式。将霍尔器件的输出电压进行放大,再经电流放大后,让这个电流通过补偿线圈,并令补偿线圈产生的磁场和被测电流产生的磁场方向相反,若满足条件IoN1=IsN2,则磁芯中的磁通为0,这时下式成立: Io=Is(N2/N1) 式中,Io为被测电流,即磁芯中初级绕组中的电流,N1为初级绕组的匝数,Is为补偿绕组中的电流,N2为补偿绕组的匝数。由上式可知,达到磁平衡时,即可由Is及匝数比N2/N1得到Io。 霍尔电流传感器的特点是可以实现电流的“无电位”检测。即测量电路不必接入被测电路即可实现电流检测,它们靠磁场进行耦合。因此,检测电路的输入、输出电路是完全电隔离的。检测过程中,检测电路与被检电路互不影响。 斯巴拓传感器----您身边的力传感专家! |
|
相关推荐
|
|
AI模型部署边缘设备的奇妙之旅:边缘端设备的局域网视频流传输方案
1614 浏览 0 评论
1476 浏览 0 评论
AI模型部署边缘设备的奇妙之旅:如何在边缘端部署OpenCV
6715 浏览 0 评论
tms320280021 adc采样波形,为什么adc采样频率上来波形就不好了?
1861 浏览 0 评论
3548 浏览 0 评论
78288 浏览 21 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-23 13:38 , Processed in 0.450311 second(s), Total 37, Slave 29 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号