完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
针对采用单片集成功率 MOSFET 的 DC/DC 转换器解决方案上,探讨使用控制器驱动分立式高、低侧功率 MOSFET 对的 DC/DC 稳压器电路适用的 EMI 的抑制威廉希尔官方网站
,到底有哪些具体要求?
|
|
相关推荐
7个回答
|
|
使用控制器的实现方案具有诸多优点,包括能够增强电流性能,改善散热性能,以及提高设计选择、元器件选型和所实现功能的灵活性。
图 1:驱动功率 MOSFET Q1 和 Q2 的同步降压控制器的原理图 然而,从 EMI 角度来看,采用分立式 FET 的控制器解决方案与采用集成 FET 的转换器相比,更具挑战性。主要有两方面的考量因素。首先,在紧凑性方面,采用 MOSFET 和控制器的功率级的印刷电路板 (PCB) 布局比不上采用优化引脚布局和内部栅极驱动器的功率转换器集成电路 (IC) 。其次,对于死区时间管理,在 MOSFET 开关时间在额定范围的转换器中通常更精确。因此,体二极管导通时间更短,从而能够改善开关性能并降低与反向恢复相关的噪声。 本文提供与采用 MOSFET 和控制器及半桥设计的多层 PCB 相关指南,以实现出色的 EMI 性能。当务之急是谨慎选择功率级元器件和适合的 PCB 布局,最大程度地减小关键回路寄生电感。布局示例表明,可以在不牺牲效率或热性能指标的情况下减少传导电磁辐射。 |
|
|
|
迎接]产生 EMI 的三个基本要素包括:电噪声源、耦合路径及受扰接收器。应对其中一个或所有基本要素,可以实现干扰抑制,从而实现合电磁兼容性 (EMC)。在实践中,可以采用多种威廉希尔官方网站
中断耦合路径和/或强化可能的受扰电路,例如插入 EMI 滤波器来抑制传导干扰,借助屏蔽来降低辐射干扰等。 对于与降压稳压器的不连续输入电流(或升压稳压器的不连续输出电流)相关的低频]除了电压和电流的尖锐边沿之外,与开关波形相关的过冲/下冲及随后产生的振铃也非常棘手。图 2 显示了硬开关同步降压稳压器的开关节点电压波形。开关节点电压振铃频率范围为 50MHz 至 250MHz,具体取决于寄生功率回路电感的谐振 (LLOOP)及 MOSFET 输出电容 (COSS)。此类高频分量可以通过近场耦合传播到输出总线、周边元器件或输入电源线,并且难以通过传统滤波衰减。同步 MOSFET 体二极管反向恢复存在类似的负面作用,当二极管恢复电流流入寄生回路电感时,振铃电压升高。 图 2:同步降压稳压器在 MOSFET 导通和关断转换期间的开关节点电压波形和等效电路 图]图 3 中,还显示了导通和关断期间高侧和低侧 MOSFET 的栅极驱动器回路。务必遵从功率级布局期间的特殊注意事项,确保功率回路、栅极回路和共源寄生电感都尽可能低。 |
|
|
|
实现低 EMI 的 PCB 布局设计
以下步骤总结了 DC/DC 稳压器中元器件位置和 PCB 布局的基本准则,以帮助尽可能降低噪声和 EMI 信号。其中一些步骤类似于第 5 部分中针对采用集成 MOSFET 的基于转换器的设计所介绍的步骤。在后续部分,我将提供 PCB 布局案例研究,探讨如何优化降压稳压器 EMI 特性。
— 将 LO 的栅极驱动器直接连接到接地平面上方的低侧 MOSFET 栅极,并尽量减小介电间距。 — 对栅极驱动器进行正交布线,尽量减少功率回路与栅极回路之间的耦合。
— 为提高灵活性,可以考虑使用具有栅极驱动器专用源极引脚和漏极引脚的控制器。
|
|
|
|
DC/DC 同步降压控制器案例研究
图 4 显示用于汽车应用或噪声敏感型工业应用的同步降压转换器电路 [6] 的原理图。其中融合了有助于改善 EMI 性能的多项特性,包括恒定开关频率操作、外部时钟同步以及通过高侧 MOSFET 受控导通实现的开关节点整形(转换率控制)。为了帮助实现最佳的 PCB 布局,原理图中将高电流走线(VIN、PGND、SW 连接)、噪声敏感型网络(FB、COMP、ILIM)和高dv/dt 电路节点(SW、BST、HO、LO、SYNC)突出显示。高 di/dt 回路类似于图 3 中标示的回路。 图 4:DC/DC 降压稳压器原理图,其中标示出 PCB 布局的重要节点和走线 图 5 显示了功率 MOSFET 及输入电容的两种横向回路布局。功率级位于 PCB 顶层,控制器放置于底部。横向回路设计在顶层存在循环电流(图 5 中用白框表示),该电流在第二层接地平面上感应出映像电流,以抵消磁通,从而降低寄生回路电感。 更具体来说,修改图 5b 中的布局,使高侧 FET (Q1) 旋转 90 度。这样可以改善 Q1 的散热效果,从而更好地进行热管理,并可以在 MOSFET 附近方便地放置外壳尺寸为 0603 的低 ESL 电容 (Cin1),以实现高频去耦。考虑到功率级元器件的 U 型布局方向,较短返回连接的输出电容将放置在低侧 MOSFET。 图 5:两种传统的横向回路布局设计 改进后的 PCB 布局设计 图 6 所示为改进后的布局,其优势是可减小功率回路面积,使多层结构达到高效率。该设计将 PCB 的第 2 层用作功率回路返回路径。该返回路径位于顶层的紧下方,形成小尺寸物理回路。垂直回路中的反向电流可使磁场自行消除,从而进一步减小寄生电感。图 6 中的侧视图展示了在多层 PCB 结构中形成小尺寸自行消除回路的概念。 将四个 0603 输入电容放置在尽可能接近高侧 MOSFET 的位置(位于图 6 中大容量输入去耦电容 CIN1 与 CIN2 之间),这四个电容具有较小的 0402 或 0603 外壳尺寸及较低的 ESL。这些电容的返回连接通过多个 12 mil 的过孔连接到第 2 层接地平面。第 2 层接地平面在 MOSFET 的紧下方提供了至低侧 MOSFET 源极端子的电流返回路径。 图 6:采用垂直功率回路设计的功率级和控制器的布局 此外,开关节点覆铜多边形区域只包含电感焊盘以及连接 MOSFET 所需的最小面积。接地平面覆铜区可屏蔽将 MOSFET 连接到电感端子的多边形覆铜区。SW 和 BST 的单层布局意味着 PCB 的底侧不会有 dv/dt 较高的过孔。这样可以避免在 EMI 测试期间,电场与基准接地平面耦合。最后,在电感两侧各使用一个陶瓷输出电容 COUT1 和 COUT2,优化输出电流回路。在输出端引出两个并联的返回路径可以将返回电流分成两部分,有助于减弱“地弹反射”效应。 图 7a 所示为,图 4 中的稳压器采用图 6 中的优化布局时,使用宽带探头测得的开关节点电压波形。振铃不明显,只存在低幅度过冲和下冲,表示 50MHz 以上时 EMI 性能良好。为进行对比,图 7b 显示了采用图 5b 所示横向回路布局的类似测量结果。优化布局的峰值过冲降低约 8V。 图 7:VIN = 48V,IOUT = 8A 时的开关节点电压波形,(a) 为优化布局,(b) 为横向回路布局 图 8 所示为图 6 中的转换器在 150kHz 至 108MHz 下测得的传导发射。使用 Rohde & Schwarz 的频谱分析仪,所得检测器扫描结果的峰值和平均值分别以黄色和蓝色表示。结果符合国际无线电干扰特别委员会 (CISPR) 25 5 类要求。红色限值图象为 5 类峰值和平均值限值(峰值限值通常比平均值限值高出 20dB)。 图 8:CISPR 25 传导发射测量结果,(a) 频率范围为 150kHz 至 30MHz,(b) 频率范围为 30MHz 至 108MHz |
|
|
|
学习一下学习一下
|
|
|
|
pcb布线时要考虑相互间干扰
|
|
|
|
不错,很好的经验分享,辛苦麻烦了,欠缺这方面的资料,非常感谢
|
|
|
|
你正在撰写答案
如果你是对答案或其他答案精选点评或询问,请使用“评论”功能。
为什么在频率为10^3 Hz处,产生的相移就可以确定约为-90度
1271 浏览 1 评论
【高手问答】电路的功能是为了0.6v到40v之间调压,运放发热严重
3397 浏览 8 评论
USB3.0 工业相机的传输速率是否受到电脑主板某些硬件的限制?
1213 浏览 0 评论
2406 浏览 1 评论
1326 浏览 0 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-23 18:29 , Processed in 0.641335 second(s), Total 55, Slave 48 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号