完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
参见下面原理图是555定时器电路,如何分析这个电路,计算定时时间
DOG点无信号输入时,是定时电路,此时周期T、频率f、占空比分别是多少,求解 ti1ucvVYoy/XCzr1dbTuwuvU9fdWeanyGje949BWTwW8B/y4wCMYn8cqnWNLFmKTA7HJY+fYrIbrRA5jXhgEAQBsh2t9xGScD5Tzspsqu4bTk5W9tYRCF7mbhlHXx4eUjdqoeupWciyeRtsr9OVs9Dh6cMrR6lNn5XCa8WobNaMhccpxTQ9P4l9XMQ/J8NCN+SuV98YiZVpD1fuUJL7uh/G8Mrm0wr1nWa2+ziK6rl7bEgAgk+HbAwBsh5u8ick4H+jgB/8mKu5FfY0FGKUQtGpaL+VX315asGMgFb71gPbjr7xZX8Hs32VFNEp/DnI4cnvozyC1nLS47VqqHlpADaKG09ubKrbNp/qlLtq/w0V9PW76zVvDlPfPfGWaRN6xdfTSUd9qmwMAZChTAcjKtoLMyvwQmzyITQ47x8aszi8R7zQd1J+FsLeNvio7mi4Zz229J9GM2jrfv98iNk/1ezS9pkh9nip2Pm+h8hKFn1QUgro7tlRKVX6ezXvoQHEvfc5J86paactfTtLnrYHzJgdiy1y4TuQw5oUaIACwtVA1P8LQ0gFETYfC9uG5oPh8fTAE/uEX8KOvvo6m0rmo/ZHM29lheoTu5XQWkPvpvb73SMQ/DQAAMgQKQACQtbpG9qMZr26nq5cZhslWCjYl1cr86AE0aI6btnCao422PEs0SFT2KOs4NhRpfYNa3PQk+kVIhcJPGhnjomU5W+msHK0P0Mg1p/rfBwAAGcpUAMqWkR+sgNjkQGzy2D2/ROR4z6SazglKQedRrZ8PT6JgQ06q2URUymk5q6npljK1j4TaIXz***qLa9er6eUVt1FsMmZ0CeA/Ig9jC28sDIAhKgX9/Vx+tb5zeJ0jtA9Q8nFxDz6YJ37W2FgjnTQ7ElrlwnchhzAs1QACQ5ZSCTuc87QceT8Y+PaPH+dJX6oUcZ2WZegM8kX64cxyawUHGyjn6GCoaeJAq7/MP8uFZupF+7zhRn9NxrWfR23T5WhedcPwxeiIAQGZCAQgA0o5xGOtYpkS3AQCiEavLadlurUaTp/5vDfMP/c4FH06/uzft74rtpr8AAOnOVADKlpEfrIDY5EBs8mRafmLo6lRMycJ1Igdikyep/IzN3HgKVQvqdvmGi8d5kwexyWF1bFbDdSKHMS/UAAEAAAAAQNZAAQgAAAAAALKGw9vZoVZqG0dGMFYRxZLOxLJ49hNuHyye/bBUpfO8eBRk7l9IJp2JZfHsJ9w+WDz7YbGks1B5R9oPz4tHIdL6gtXpPC8ehWj7MaaxaOuzZNJZqLyj7SfcPlg8+2Gxpqe6j45oBpeq1y8Y05lYFs9+wu2DxbMfFks6C5V3pP3wvHgUIq0vJJqen79cbZYlxLofnhePQrR8jWks2vosmXR***PHsx5jGYs13aX6BPgeZZHZ7a8hzH+m887x4FCKtL3AfMB74hcWyfrLpPC8ehWj7MaaxaOuzZNKtfp8KVqTzvHgUZO5fSCadiWXx7MeY5isAMV5g3DhWmbAdYguG2IIhtmB2PyYHa9dR/7mt5Foy3d/xm7W4yVW8jXZ805uW7TV3/vbl52ij6pLVVLlDXyCUTfT1o/jHazvphAuG0on/Pkhrxz6qrTtkOO3fofepCMyn0LBPZT/tVX0o7+MmbZ0fDvNvF4WVx9LKvBj/IDMWgGKF2ILdmduDFno36nOQCe50jDcVgGKVKddkIttZmRfDMQmWabGhCRwAZDUe1tq7aaA+J3iovKiNFh65SfmS+zE19a/TbogaiDuPb59O1UMLlMKL6EQ+iSbpi7mA5Hb3UgssOS+7iR7X1/F1KA+Rj9ohfRLNoIHUIDqjF7ro8cU/pGVPxFb4AQAAgPAwClyKIDY5EJs8OJZxqN9Dq8qK9Pv7OGnytCZaX6/OqMLn56GHlxE9Jwounr2U73SqBaHHqpqpsv8ius6wn/D5+J+LvN4r7mnJEMQZfd6iQGyQzfB+y1x2PpbdFRtqgAAAAng8reQq7qXPEfUtPoW6Pj5E5bn3k6O82XdvFFGY8Tpa1cKNI/d50w0kPfVfUm/9BqqDa/lmq5PIO/Z+KqluU9NC5SOMmFhMNXe76R2HMtPipo+PDNMWAITQ1XCNcv1NCF1TCVnOQ7Vn9lCuj564RgB0KAABQNoJvGmp7CkROaf2oprmEq152+hxtLfK33nc4dWbwDUPp4HHcYmFE9uo0XuGVrvj7U0/OO0L5YmTajon0E+f+YdWsIlkjIuqHXtoU4u5IAUQpOVhungp0S0XnqonAPh1NdxJM0dsIG/nEdq75EO6/YF39SUA2ctUAOLOQVayMj/EJg9ik8PO***Fk8gu8cWm0Kd5tonE6C8jddEifU35fthxLgwz3hgwbW6GLVk3Ta3RE87cgThp6RQ/tWaR8lELTqClE/3NfA/2m6ft6M7nUw3tADuvy8tCCqW/Sr1+8Sp8HMMtxDqUrP3yP3j9wkFr2fE1XTjxTX5Jadv4ssZqdj2V3xYYaIACAQKMH0IzaZr2piId2vt6LxhaqMyZ/GFtH678K/TEattamvo7u9g7UBjOIko+zcjj9sraJhv/aUPoCMPBUX0mtN6+goZ9/T08BCFB4PS0YWUtn/McZNK5zkSV9CQHSHQpAAJDVPMtqyTF2N7nnrNb696icVLOJqDSX+/X8jXqtvUQrsBQW0Em1deo9IHjo7J9vGkcf/LSGKnZyH6A1VL1P29rU/I0phR7ehvsNOTYUGYbbDpOPj5MmLh0SsvAFQDlb6IE5+6lmbE86Me8CumfHY1RaUhu9eSVkFe4fds3X66i9/RPqmPh7GoomcADm+wAliquUrBzFwcr8EJs8iE0OxBaM+/XE0rQtEM6bHFbHlug9OBKRObF5aMGwB2nYthUhm0tyB3iB+4IIuA9Q5on3PkCe6vPVAtDOG89UC0M91l9J39SU6kujs/L9xjLhsyvRY2Lnz+VMiw01QAAAADaljfzVUy30iEmkxarLU0fn9flvcjgmqNNPHvpQX3KAak8f70tfuq/TNK9NK7Jg1LEDtKzkfjV+gY/ZRZc8RS3q3C66znGV75j4j1+4dLmcs++i//frweo5z730c9oUR+EHwK5QAAIAAOhGrYe71EkInA/HXJBx0t1han+MNT4scD4WJxRfSB7vBvJ6H6HLnv69WqjxLF1Oa+ctV9I4fQPN7pdLZe9vVNdZ6iqhBjV9pmUDeHSfPnTDzd+j9fUf6/NE+za/Rl3j/pMK1UJOFXX+6SNFCXrlhtOUNcKlp0DXKFrZeUgvAG+I6Xwkek0CZApTAYirlKxkZX6ITR7EJoedY2NW52clXCdyILbkGWt0/IUhDc+HK+yI7eL3Eblf10Yx7Oc8m7Y2+X/0Z7OcMWfTj//wml7jc4Dq1+XRxNGnKoXEDfR29WJaPUJd4BMuPZXwfstcdj6W3RUbaoAAAAC6UUFejjoJgfPRaP/sJ9a8LVafNe0gp9pU6zX65VcVai1CzpirqHPc2yltvpU5BlNJ8aO0qJGbv71GG777Pbq0X666xFkUumYnXHo6SPaaBEh3jvb21qQHQQAA6E75+SerIxxBduAR9drbZ+lz9sKxEd2uzcQgVA2PsQAUarkg1uPmV5Fwf5aLZ31Oq168ijzl4+n5yRtD1GjcStNzZ+rNuLhPzJNUtH1eFjR/8+va/BTl1p1NewdsoPsG3qUeI/Nx8QuXHgseBOE2sm6oP3y2BrPzZ1C2wChwUSA2eRCbHIgtGP+Qi/RDLxycNzmsjs1uo8CJvhX8Dzvn19F1nG8+EnHdB9b4GN8L4d4bIj2WUeCMBaCzlOc/P+ddtRZo8NIqempspdr3BwUgpvXrab7kxzS/Uev7xMdu8PBG+sW2ZepxEsKlxyLeUeASkeg1KUMmfHZhFLhgmRYb6jMBAAAylCjIGKdAgQWkwPl45DjH0d2/baXS63ZRweyf0/EXXaY2ges/5zT6Tao68WeMwTRhxv/RK33P9xX8+Hjt2jqCHh9WaRrtLVw6AFgDNUBRIDZ5EJsciC1YuH+5o8F5k8Pq2OxWA2SUSH58b5fcS9epz8s3HaGVo9WnJsZCj/G9gvsAZR4raoCM8NkVDDVAwTItNlMNEO/QSlbmh9jkQWxy2Dk2ZnV+VsJ1IgdikyBnC8289Bz64xcfqQWbUIUfJmqHEvmjAOwB77fMZedj2V2xoQkcAABAhuKO92/c9zO6+Nuj9BQAAIgGBSAAAIAMtc/zNhW33KyOhOjInUDV+/QFAAAQlqkAZGVbQWZlfohNHsQmh51jY1bnZyVcJ3IgNjke77pGbdrW+cLx9D/3NeipAGZ4v2UuOx/L7ooNNUAAAAAZqp/zbBrcf4A+BwAAsUABCAAAIEPllD5Bt7UUqaO85V76OW2qKdWXAABAOKYCULaM/GAFxCYHYpPHbvnxjfrEzfpY4Hwq4TqRI568ZJxvu8ZWuqJDvVu/t3NDCm48eoBqTx/vu1eNNq2gv+97kS665Clq0ddiDdf9mpbu61Rv8nlen//2rY/726QHfJZkLjsfy+6KDTVAAJDR+H4MRLdrMxAVHy/tmGUmvm/NHXSbPgeRcK2QmBLXh8re30he7yO01FVCDd4NyvOZ9MOur/TloZ1QfCF51HUfocue/j1t0dMhSzja6LFRy32fNzzl5dYFXwfKetXDePkafQAPD92Yv9K03XX16poAUqEABAAZ6eQTF6uTwM8L8vCRFo74MSEYn2eCR048Rp0Efm6X881xGGMJnE+GuPePsTCUXIEoXh+R+/Ue+nPIGt7edO2mX1L10AJq6JyvXIPzaVdVK5WWN+srKFrc5Oqxhp6ZMl1ZPo0q+ilp9Yep9IsydX2e6medSRPD3NsKIBkOb2eHl58Yq4WMoyTEks7EsmT2k47pPC8eBZn7F7oj3ZjGUp0vC5V3qvO1Ip3nxaMgc/9Cd6Qb05hV+bJI6fn5y/U5yAbhan1uU5bYSXv7LHVIa1nC3fjUWAjyejfozyI5QMtKnqSi7fPUZnbczG3w8Eb658f/0hbrlrQ8TxVdmw3LRlGDd2YKmuZlrzsd42l2e6vvM9GKz1shnvSub76iJy59gZzby9Tz71lWS9d8czE1zjyJ8o7/mqpLVquFn4Zp31HXZ7wf3p4fP/viDZo+pwetqeoj5fUwWen8/cMFNBbPfoxpTNbrybZ0JpYluh9fASgZvDPjzlPNyvwQmzyITQ7EpglVg/HJpzfF9c95Np23UMdLfIEny4rYRJ8YUQv0q0+1JliyakrCsTI2joXz6+g6zjefDC7kBBaATAUfZRk3KVzo3ainRBJcALp41ue06sWrqFBbQe0D1HzTvWoBSCzzlI+n5ydvpNUj9JUgaYEFoFRL+D3AzduUQk7lDm3WtWQ6ba/orc20uCmvqI0mTnfT2tUnEJVNJG9NkbrIl199HV1H42hlCmuAEo2NP08T+fy04vNEsDIvlmmxpfabAwAgRbiww5NgfA7BRJMSQVbhB9KfaPYmCkRissLIeWX0+fhq9AHKUg5vAf3xi3KaQbl0+Ri98MP2ttFXZUfTJeO5IDGJZtQqhZ2Avj4NDV+i+RukjKkAxCUqK1mZH2KTB7HJYefYWKrz43/HeRI/5MW8FTL5OolW8EnX2MT5XdjZoTZ7S+R8p3tsgszYuqPQY5TjHEd3/7aVSq/bpadAd7Hy+mef/btTfTym50lUs6mIKu8z9P9RXFB8Pl2tFnCcNK/qJDXNz0O1HefF3HTS6tislq6fXTJ0V2zW/FoAAAAA+XK20HW5vdR+Q47cCfpIWhq5hZ4+VKk3f2NcsHnZ0PyNla68j2b3yw1a5px9F3lXDtbnwGqe6vPVgrB2jfSko8***9CUWGuOiZbvX+2t5Rg+gQXPcWs2go422PEs0SGsBp6nfQ70mGBMA5EIBCAAAIIMdGXUPvfev95TCzgZtJC0AA2fFa2pBmO8VVV9eRA/+2oKb5SqFmrVjH6WKna00hYe/9vamiseG05uXLVYKYTzktZNqNimF5txF5MhZTU23lJmuXTR/g1QzFYCs7CzFrMwPscmD2OSwc2zM6vyshOtEDsQmT+f3TtGfAYSWl+emp9//FY01VtulChd4tmn9Dg93jtNqDgtd5D5yk5KmD3k9epy6nKfAgQ5KH7oi5uZvzOr3m9XwuSyHMS/UAAEAAGSwnltuobNyepKjpJbeceiJAAG6Nj9FzReNor5Jj/0LkPlQAAIAAMhUXaNoZechtYnT3stX0M/vf1dfAGDkoYfu/YiunHimPg+Q3UwFoGwZ+cEKiE0OxCaP3fOzEq4TORCbPCK//zcQP3AhhJZGunHAjZb2EXPkfiehKT+/d8j0SJPV7zerZcNnlxWMeaEGCABszkPlufcrX5KLyOFyq02E+I7kPD9ixb/1dTQivaS6TU8BSG9dDdco16w2wlf/Z2bS/DH6AgADT/1jNHXoBfqcdbydX8c9tbe3hUwPNwEkAgUgALA5J9V0TqAZNJAa3C61/buzsoy8mwbqy/3CpQOkUuvhLnUSAucjySl9QvkRqI3w5d1elsL+HbvoOsdV5HBMUKefPPQhLSu5n5bu0+71wro8dXTRJU9Ri/78vD7/7Vvfv94uWuDaoK6jOUC1p4/3radNKzLixqmBMTp/uMwXV0O5FhMfp8AYjcci8JimCo8E9+CUo/W56JK5JtOdnWOD2JkKQNky8oMVEJsciE0eu+dnJVwnciA2eVKbH/9Qr6LOPz1FXu8GdXrlhtPohpu/R+vrP9bXIdq3+TXqGvefdJZSMPj5Oe/Sbw/8Tl//VtpTeK2psOTXh8re36is8wgtdZVQg7r+zLhGAOtOJxRfSB79mDTf1ZuceuGttGYh3XLhVKpVjpNn6XJaO2+5fiw2qPdKCndMU8nqa9JKdo6N4bNLDmNeqAECAADoRgV5OeokBM53N8/SDfR29WJaPUJP0OWMOZt+/IfX9FqPA1S/Lo8mjj5VLQh9vHiSoRAzmG5ccpapsGRHOWOuor1LPqTnGvUEXT/n2bS1yRx7uGOaLtL9mkyGnWOD2Dna21sxICIAZLT8/OXU3j5LnwvW5XiXbsp7l0q/GEYXf3uUltj4Eo3Yfx41zjxJmxfCpdtItOOV7jLh9fNrTATHxf15rMS1D5F4lt5K9w28K+SPdW7q9fzkjVTTt44unvU5rXrxKvLoacb1eQjmi/b/J71yw8e0wPUBTXVPIPPtaA7QspInqWj7vIyp/eEmcCJmEUu4ODk999J1NLz6YbWmJ9IxjeZOx3i6jawb75ybVyZ2TXYp26a+PyUPmpD4//m364/xy+TPUFAKQN7ODl8BiEdHSKQqKhO2Q2zBEFswxBYsE44JD1zAN9MLjwdC2EOXiRvysfo6Grr7HNp5Y8CoWUp6SYuLtlfwl2poVsaWiu0iHa9MiC36+Q7NytjieY2i/wH/C835dXQd55uPVaKv887cHrTQu1GfC41/rE/PnRmyiZb6w77ubNo7YIPvB32oH/f+fdi7AOSPnfs6BccpjsPqzhVhj2k0XACa3d6a0mtZxjXJo7MlMkhBvNcy58MFLStjS/T9ZuV2mfAaWXfFhjo/AMgKfYYeQ0W4SSRA3PqNOZ8O3/vbkH14uBlceU0Vzag/jSbrBR5e//Px1YaBDJTCwG8K6Dcp7uPS3bgwOHptb5ofUKvTurQq6NhFOqYAkHooAAGAfTnaqHrYInLkPk8f33KJb4Qsdbjr***vp1V8/TY7yZi1RIdLdc1ab0gFSif95Nv77HDjf3XKc42jX1hH0+LDKECOWDaYJM/6PXul7vq/mhtf/w3O9qFRf1+G4iy5sut63vHXHOnLqy4wjp2Wiz5p2+GIpurWNGl6vVGt8GsrvpHt2PEZlynEqmP1zOv6iy9R1+s85TS0IRj6m3S/dr8lk2Dk2iJ2pCVyiEq2KSpSV+SE2eRCbHIgtmJVNohKVTuct0eMVjtWxyX79kWTCNempPl/5Yf2m8mwUNXRuiKsJWSxN4CC9JNoELlGJvwesawKX6P2ArP7ssjI/xBYZirwAAACZquVhWnzcFuUH4BF1BLLbH3hXXwDQ/bhwEu/EgxqESg83ASQCBSAAAIBMVXg9rZrWS33Kwy0DpAuulUlk4gENQqVHmgDihVHgokBswRBbMMQWzMpjEqm5ETfxSXcLOzv0Z8FScfwjHS8rz1sqznckVsZm5Wtkn33xBj0wcjkN27YCTeBszopR4IwyYTs7x8ZwTMxk5IUCUBSILRhiC4bYgll5TKIVgNL5Bx7/mEEBKD4oAAVrmNmDNozroJWj9YQYoQCUeTKpAHSwdh31n9tKriXTzbcWaHGTq3gb7fimNy3bO40q+oVJL2yj6pLVVLmDF56sppW+UKvu83gaSM/qtzbojtjSfTvEFsy4HZrAAQAAZCwP1Z7Zg/54wUdxF34AUs1ZWUbeTQP1OcFD5UVttPDITeTt/DE19a/Th0zX0ud9Nt2f7u1NFdunU/XQAn9ByXGG8nw+HTbe1w0gTqYCUCKlqWRYmR9ikwexyWHn2JjV+dkV3gPy2PGa9FRfSdM/cNDqGaeRI7cnDcUgCBBG2rzf6vfQqrIivfDipMnTmmh9vT/94m+PMqcb8K0KptK5/hojnd0/S6zML1tiQw0QAACkPb57O0+iT5eYt4PAWOKJzVnxGvEIcGLaeeOZ+hJuhtdTnZJzgGpPH++7V402raC/73uRzuvz3740cQ+bhnJtXf89bczbp9O9bqB7eDyt5CrWBu5gfYtPUR/DpQu7KlbQVMd4c1M6gAShAAQAAGBTXCgSBaHECkN9qOz9jeT1PkJLXSXU4N2gPJ9JP+z6ik4ovpA86vwjdNnTv1ebMZXWLKRbLpxKtTecpsxx4Wcm7VjN2/N6G2h+U7Xe3Akgdl5Hq/ronlNH1fvUpwBJMRWAuHOQlazMD7HJg9jksHNszOr87ArvAc0jJx6jTkLgfCzS9ZqUcWf6SLEZa4iSKwyF8xG5Xw8ebbFr819o7bzltHqEnqAoXXkf+m10k3T5LHE6C8jddEifI2ppOZYGFYVPZw5vAQ2unkneTb1pga/PkF+6xJYqVuaXLbH5RoEzJhrbyMWSzsSyePYTbh8snv2wVKXzvHgUZO5fSCadiWXx7CfcPlg8+2GxpLNQeUfaD8+LRyHS+oLV6TwvHoVo+zGmsWjrs2TSWai8o+0n3D5YPPthqUoXI26FWj+TRoEL9fqNaSyR4yOI9Pz85erxEsLlEev+eV48CpHWF+JJF03f2G10h/7MftrbZynn52R9Lnlc6AlHFIK4Zia6A7Ss5Ekq2j5PLcB0eepo8PBG+ufH/1LmRlGDd6ZesNlFC1wf0FT3BPIuvZXuG3iXWgAyrr+k5Xma3S9XXRviFzgKXKzvI54Xj0Kk9YWk0+vrqKTFRQ3TtJuWdjnepZvy3qXL1EEMPHRbybtU9tw5lJd3UE0v/WIYTex5yJ+uXKZPXPoCedeWqX1/uB/Q4LkF9Li63knqPo15slTHxcSyePYTbh8snv2wVKXzvHgUZO5fSCadiWXx7MeYhmGwo0BswRBbMMQWzMpjgmGwg0XaLhOHwRZ9YrjWhwtAn3x6kzofT02JlbHFMwy2iI1j4fw6uo7zzccq1OvkAk5gAchY88PLYn9/BBeALp71Oa168SrylI+n5ydv1Gt6zAWg6bkz6RW1OZym4bpfU/NN96IAlIRMHAZbVTaRvDV6lY5SKHKM3a080Ya29g1qEJgeYhjsimaxjmLIcNq/w0W9Prc+tnTfDrEFM25n+nRNZGfJsDI/xCYPYpPDzrExq/OzK7wH5LHzNRkpNtHkTRSIxCTLyHll9Pn44L49ztkT6OyKm2jpvk49BbpTd7zf1GGwO+drkyj8sNHj9HRD4Ycp6VwL6kvnYbC36duLNN+2yuR2UV+v/T9LrMwvW2KLr5ExAABANxD9YkRtmZi3g8BYZMaWqkKPUY5zHN3921YqvW4XNZTfSffseIzK1NHeBtNK71zaU3itbxS40TV96WzU/gBAN0MBCABAIs/SW/UfeyvSarSrwKGVA+fBfuQWevpQpd78jXGh5+UXr6JCfd45+y7yrhxMpTXaiG/+Zm9cCHrKNwocjyCHQRAAoLuZCkDcNs5KVuaH2ORBbHLYOTZmdX7pgPtFcJ8H/qG3d8mH9FsJ9zzBe0AeO1+T2fh+g/jgs0QeHEt5uis21AABAEjC/4qLf777Oc9WH9NFKptZAQAAZBJ8+wEASHeAHrr3I/qNYfSrSIyd1AMnHhI5VHq0KdJ2AAAA2cxUAMKoFvIgNjkQmzx2zy+dNJTPpDdv8/eXiMbYSV3W1N7+iWn+k0+/VCdtfn7YPkB4D2SmbH6/QWzs/H6z+2cJjqUcxrxQAwQAIM0Bqj3deE8UAAAASDcoAAEASOJZupymf+Cg2pHakL8/kTAIgizoAwQAAKAxffthVAt5EJsciE0eu+UX2IQrXJMuK6lDAfuG+zUOBZw4vAc0Ms631cfSSnaODeSw9BpxtFH1sEXkyPVPebl1wbcG8K23hqr3aUkHa9f5timpbtMSo7D6+rdzftkSG/7+AwAAAAB5vL3p2k2/pOqhBdTQOV/td7irqpVKy5v1FRQtbnL1WEPPTJmuLJ9GFf040UP3zxXbTKJBc9xpdT81sA8UgAAgI6FJV3bB+QbIfK7iXtoTrvmZupUci6fR9oreWppPM+3Va4P6DD2GihzacwCZHO3trV79OQBARsrPX07t7bP0ObOl+QW00LtRn0s/dzrG0+z2Vn0OYhHpfKeLTHiNLN3fHxAsUz4zur75itaOfZQqd2jzQ+67ghpnnqQ+/3b/63TmeYdp4nQ3rV19AlHZRGqv6qMuo8aXKP9nzXQ8DaTHvxhGF397lJYOIJHD29mRdAGI29RZOYydlfkhNnkQmxyITSP6f3AtAN/bhod4FvNGd+b2SPsC0MLODn1OHrtdk7Geb9kSjY37L3Czn3hZed5Yur8/IJgoAKX9+9vRRg+5NtJ/vDSRGo6tpeK98/Rmbor6Ojp6w9H06IRSunq0h8pzN5Bj0zxaOZro32/8lf7w8mn01K/Xh6khksfq95uV+SG2yNB+AAAAAABS4pieJ1HNpiKqvM/Q/0dxQfH5SuGHnzlpXpVWM8R9gJb96hsaPdtJ7o5pdMUzG32DI2Q+D/1zRIH6p4NxerJeX6zbU25Y7nqY3lGbAHpoq0tLq8qdTH9/53+o9kzzOl0N16jzC4bNVNfl2l3ffvTt9r6927cfY7qWR3QhX1vLw+prWZ0/zbAf/+v1x5BeTAUgLlFZycr8EJs8iE0OO583lur8+J9/47//gfPdoWvzU+rw1zwt3deppyZH1nEMHDUtcF5I1/eAjPNt9XvACvyjh2vEHLkTbPRDEaRSfqCed1qhep0cXd6gJ6beZ/82fAaOcdGy3evpOvFjf/QA/wAHj***a8izRoCLleUsrLdn5FTXH2TbJ6vd2Yvk56dzGVvrVkp/QWZs61Jp/rn39ZOxk2t7Mx0orNPxlUJO2TJl+dcVGeuLCh+n9A3k0fOdGOu37RCdveo5+1PdB+uUjU+g4GkvX7Lie+irHK6f0Cfp51XIq276Chrub6KKhQ+ji3V/69nXNksPU6ijyLbumy5/+e9+JCRdb+Nf2jvN6Knu3g0rLNhn241Ty6VBfj3h94Vh57ox5de+vBQAAG8kZcxV5vY/QUleJngKQWvyjx9v5pnLNfa6nAAQovJ7+8WELfXr4f+mBPQ9YU1BWCjXc/6diZytN4eGvvb2p4rHh9OZli5WCGA957aSaTUSlPNx1zmpquqVMax5X6NJGi9PTKwYN8zebs6OuUWoB5J9b9lNXw53091fHqrVfQsHsuXTaR3Np6z9OUdcdN/cn9F6dVsjIKV1IPxqyibZvVmcVHmrJcYY***LRWj6C9IxuopChXTzE7YYA/z1AivTaR/1GDltOUgbfRw8s8WkKaQwEIACALyKhBAYDM1up1Un8rChRKgWfqlllqP7jDneNoFKcphRv3kZv8Q16PHqcu54n7/ginlP3Ml+6t4WohG8vZQnVVr1C+00mHPAfpqxnTzAUYpdDjGkHU7tEKFQWjx9Mxq9ZoTcpy9pHnI/IViKilkQ71G649V3i9r9JLA7+rNkN7Yo65vwwveyJHa6L2rPdhur4ycgEoltfGCspq6Zxny/QarfRm+vazsrMUszI/xCYPYpPDzrExq/PLZFoTptBTfv7JIdOjTZG3W6TnHAzvAQC78ah9NE7MW0gnP75CK4xYAJ8l4e0fq/ePcYynI3Oa9L5QMSgc4av16dqyj87YvMFXIPJs7kklY/T1FA6Hvwkc1zIZ8bIrvRvVJnTnjjpLT9UkE9unx51DP378cnp14OUx9/vprusEf/8BAHQzb+cR6VN7+yemeR41jSd+zsL1AQIAu3GqfTS8nffTsRf38PfDgW7j6wOkTKL2pZfzFH/tjo+HWptIrSHSOGnYrVPUWp99e3pSv+JSte/NlpXLwzZ/YwUVjUHN33K9o2j2C8fQX5f8SU8JL7bXpiu8Xt2vsV9ROkIBCAAAAMCmuhof1vv9OGn43HPUNCs4cr+T0JSf3ztkeqTJDkSfHmPBobX6evorVZlqdriv6albJtKrzjK1wFM0cQp99au/UN6IKH1PWx6me2aaCyWc54/fmBg0El2gWF+bwH0TL+uaSH94RvvDLR2ZCkCZMYpGYhCbPIhNDjvHxqzOLx1oo8D9ima7t9OcwknkuG6XviRxso5jrH2A8B7ILNoocD9Qr7nK/taO8gWZIWdUP3qrfy/lOulJ/Z+ZSfND/GBNFW/n13FP7e1tIdPDTSwzPku0YbAfmfOK2gQusDCijZzWpBZI1OZxylSzezYtdF9PvT435Nc1ir5/yW2+ggcXTgYsrTDU8PCIbcX08k5/HyB1KppLQ6bk+Zatz+Hhr5U811ZRxyxtOGzuuxM6tvCvra9XGyHuD3NnaaPC6bVEA2qaaOigdm0mAivPnTEv041QeUEibfEyYTvEFgyxBUNswTLhmPAXu2jaFYg/qDP5RqipOP6RbtJp5XmLvp2HFgx7kIZtM/dbiHS+I7EytnhuhCqaInKBlPPr6DrONx+rRF9n7O+PA1R7+kya/oH262Z49cP0yg2nUZenjgYPb6S8m3+jzrOG635NzTfdSxVdm9Vl//z4X2p64XkXUcPrlVSoztmLOA4i1iUtz9Psfrlq+qV3Hkf1T/yXms7E8Tn+ost8x1Mzihq8M6P20Un0RqjxXCMyrkmumREFlHjEey1zPlxosjI2q49lvMeEJbINy4TtZOQV+9EHALBI4L1NGmb2MM0DgJW0ws+O1RvJ692gTvObqrV7uChOHTKETr3ped+80QnFF5JH36b5rt7kdKwIuV4m40LOz895l3574Hf68bmV9hReG/VeYGXv8/HUhs1vULeLXvgRjIOcAEih39A01A1UM2FUt3iZCkCJlKaSYWV+iE0exCaHnWNjCeeXs4VmXnoONaid97VOu3cUNqv/+HubL6FdFStiHl3GDuz/HtBGqBI/5szTD+ieHR9rK0tg9bGMFf8TbPw3OHA+FqmMrWvzX2jtvOW0eoSeoChdeZ/vx7rj+NPo7t+20m8f+lBPCY37Luxd8iE916gn2MS+za/Rx4snGQovg+nGJWfR+np5124o6meiMgW+b8KJ5xqRcU1ayerY0jm/hBVqNzQVgzOIaW7nc2HvHySDJbHpjHn5msBxtZBgXCGWdCaWJbOfdEznefEoyNy/0B3pxjSW6nxZqLxTna8V6TwvHgWZ+xe6I92YxlKeb56bflH6Lt1eP1Nt93xwzcW0+LgttGpaL2Wp1iRq8J/vpYu/PUpbX9kPf+nzD4FQ+8+kJnApOZ4h0vPzlyvHy988K9n987x4FOLZz/YbC2jDuA7fvUBEepfjXXpg5HJfEziRzv9+G5vAJZovi5ZuTGOx7oePcXv7rLjzZRyflbjWIhLP0lvpvoF3qQUgY1MvbubFzdy0Jl4DaFnJk1S0fR55DU3gLp71Oa168SpfszfuJ3fR/v/0NZezg4by8fT85I2mAqKI8+VRu8I2geMmcly7Jo5brLU//JlxGzlM7wGjSIWgRPCIkoldk13Ka/Q3gYvl+ud0nhePQqT1tUEQEi2c3a4/QndJ9HNSLIv1OhFEuqkPUKJ4Z8adp5qV+SE2eRCbHNkQGzd541qfnTeeqS/RcProN5fTfrc2+o0gCkChZFIBSKZI5y2e/imxSPYa4SaPPdZfSd/UlOopgtw+QIlINLZE+wDxdp98epNvPtVieX9wAWh67kxTocXYz0f8wBc/+rl5XLgCkLEwZRehYhLHjAtA5mOgFXi8a+dKLQAZCz0y3huZ1gconnxkxBYPq/MTEv3sSpSV+cnIy3T0eYdWsjI/xCYPYpPDzrGxZPIrXdERVPhhnO7dbi782F02vAd4yNTgwg9z0t0BhZ9kWH0srZTK2JyzJ9DZFTdF7dPCTdy48HNz3Rd6ihkXkEav7U3zbVT4Yf3GnE+fj/f3iSLaRQt+U0C/UQqMOc7TqP+f6+kF/dh1eV4j9+s96Gy18JM8LviIPwTEFA6uf3nsnF+2xJb6v5cAukHXN19R9bBFyheDMrnctPft3eZx7h1t+vI1vk71nmW1ARMVYxoAQKrxP8HGf4MD57vfYFrpnat27Hc4JqjT6Jq+IX/Ej7zRfC+Sz5p2kFPfpujWNluOApfjHEd/eK4XlepxOhx30YVN1+sF98H0yAujtWHxlWW5/dcYliXHWPCRLf2vycRZHZvV+UFscAbAfpTCzdqxj9IzU6YrXwzzybuWaOq5L9Df9MXU4iZXjzX68mlU0U9LW3z8BLUtqndTb6q8r1lbFwAAFFwIekof5cw/Yhn/+Df2b+H5fxz4ndq8SzwX23hsOgQ249ov/7HZoDdv00RaRtSHKuNo/iZwv5xUFHwAsoWpAGRlW0FmZX6ITZ60j22zmyq7htOTlb21+UIXuZuGUdfHh7San6lbybF4Gm2v0Jcr3j+2H91c1kvNr3F9E5VPKNKXpI6dzxuzOj+7svN5wzUpD95vEE13XCPcPyfeKT+/d8j0cBOz+2eJlfllS2wYBCEKxCaPVflxU7b+bw0***02IQkyLm/KK2mjidDetXX0CUdlE/3r1deQYu5uOp4H0bOe4uP6Rw3mTI9G8InWK507e6S7bB0GIV6TzLVvi12Rix1j2uYkm3QcJgWCJ3gg1UVa/v63MD7HJk2mxoQAUBWKTx6r8GmfcSyMdk0IXgJRCztEbjqZHJ5TS1aM9VJ67gRyb5vmG32VqAeqZAbR/hyvmzvY4b3IkmleiP4iz9byhABS7xK9JFIAgNVAAkgexyZNpsZmawPEOrWRlfohNnnSPbcTEYqKmQ2FvlnlB8flK4YefOWle1UlqmsD5OWePp2rHHmpO8Uhjdj5vzOr8rGRlbHY+b7gm5bFzbCAHPkvkwbGUp7tiwyAIYD+jB9CMV7fT1cva9ARFfR2VVCvzyrJBc9zacKWONtryLNGgwIoiz156ZdAwKaP0AAAAZCtuUcG1mur3rxEPRtRz***JMH3XVNzLrIsrPf05NE9vm5dYZhhgHkAMFILAhJy0+PFIp6Dyqfniq04YifdADJ9VsIirltJzV1HRLmToKnPigVYfBvpbo/lWpHwQBLGD4UvV90XJfL/26yB/RFLamMJKdc35H1xmHVY8DN9E0vR4AAJtyVpaRd9NAfU7wUHlRGy08chN5O39MTf2VAo63N1Vsn07VQwvo9qaJ2uisjjNo2d75dDjOPrkAscAocCmC2ORINK8c75lU0zlPbUuvT***+QKPH+dJF3x/1Q1qs646970/ClB/mj43iew6JH+eB/3Jx/6T7Tcu1H9weujF/ZYj06Ox8nYRl+FJdtlcf8pzPf/NwmlQ2kdobi+M/10oBauSaBP87UrZ9fuLN6nW2t8pLlde4oxbA8P6WJy2uyRSxc2wgR9q83+r30KqyIr1Q46TJ05pofcD3GP8pOZXO1T6zY2D3zxIr88uW2FADBNAdDD/MG/SC166qViot1+8/VH+YLjMU4OpnnUkTubCmpJd+4S+s+dLBOkoBam9VgT4TJ2Vbf6F7OM14tS3lfc0AANKJx9NKruJe+hxR3+JT9Gea/Tc+Q1Md4023qgCQDaPARYHY5EFsARxt9JBrIzm3l6n/hKn/eIX80PfQ5PIuek6vxfLnZU5PlUw4bxFHBeNmcCWrqXKHPi9wDVBVHzU/deRArtUZMlwb/W+zNiQ68w2LHrCf8k1aDWLQtl4P3VbyLvVy7FLvRyVGEwyOLbXnL9Kx5JpDLkDLYuU1wjAKnDyZMEw8BMuoUeC4D26Ly/fdFvhdx/MPOMto5Rj9M9ZbQLTT4a+1TyGrP7uszA+xReZob2/F/48A3aDrm69o7dhHfT+oh9x3BTXONI9Kp2p8if7ns+H04JSj9QRduPQsxDfOa28P6GSr4+NcPeY58tZeSXO+r92B/dv9r1P57/rQGqUAZDyOB2vX0TXfXOw7D8Ztr2z8o3p/KS40cR+gdRdeRw+esDVo2ys3PK2e0+mrZkQ8NwfX/C81lf+QLv72KD3FOtzXrb19lj6XeSKd70jLrJToMc70cwMQRPmMHbH/PP/3mzKfv2Wg+lnKtv+mnv531kiqPPVr/2f1nr/Sf/wslx7/Yli3fEaC/ZlqgBItUWXCdogtGGILZuV2n316kJ649AX6j5cmUsOxtVS8d17If7sabniaHA9d4esEKvIKTI8mE45JvNuIu4DzD96w2+k1bd612oAXqhY3TV7cSy0AccGl/9xWfYFC3ByXRykq3kY7vumt/hN59qJ71f47XOsj/rG80VMbYtsctQZoqvsSU/8iU2wB/4hGkorjH6mWwYrzJiS6HZ93b+fX+pxZpGVWxmZ1DZCV58DKvBhiC5ZRsQV93nEf1z10mTq4gVZjrn5ekvZZ/e/Vl9FtA05UP2cHzy2I6cbk3RZbnKzcDrEFM26HPkAA3eyYnidRzaYiqrxP7/9j4qHajvNCfPiHS89s/O99rMQP3XA/dpk64lrOaqrY2Ro04MDzb21T/22/u/EbtTkb/+j0dk6iGbX6KHFFW5XCTxddO0rbP7dTr9ngP0c1Y9cEbKtMsTRnU34M+EYlVApZTyY4mhwkiJsyipEBXW7a+/Zu8znwLQ8epY+vp0RH/wPIRlyI4ebE7jmrySH6uBpHY839G/VaqxV+uPkbf1bfXrxefe85nQX0Oe3W1lPeq4mM2AkQjqkAlEhpKhlW5pdYXh7654gCtY20cQr8wbKn3LDc9bD6Js077iBtdWlpVbmT6e/v/A/Vnmlep6vhGnV+wbCZvnWX5vvz4+34y1ksM6YbPwiCY/MEbaNOer5GoV67T84W32u+Z2a9+uWvxZbu5y2YqCkIFJhuZWwnnKQ1x1KNcdGy3euDf1zV76FeE0L8qA6XHoGV***FU5hf4L39QXvqP2IVFV9KyC/W0V7fSWRe66bWX1qmFG1K+aGloAbWMnEyT1ouhqZ+nt5b80jTIwdotn9GC/nXUdN1EX+GIa31cS8bR45tnGrbV7nXROGMd3blzF501I7hAK34MUO16df28o***qHWUQCzudt0Cy8uLrQUzG+UB5x3+t/sh6Zsp0rcC6lmjquS/Q3/Tlaq1fjzX68oD+B0rBNeHR/yyQ0LFU3ifG0ShNnz+GgmLg55KaFxfkeTvxwzSgYOn7LjGkm4adj2F9UUCt25oX9rWoAl9LEvB+k4fzM42wavyDyDcaq/4+44GBtmnrtbdP1tIMI7ZGG53VzueN2f06sYopL24Cl+zE/YhCpcucOl+Yolz6DmUq9d7e9HHIdVIxcWyfLPmJ94lNepp3o/dBGuvdtvtLZb7J+8oQ8v6uqsm3Pq97x5Aq7/4ubd3V3yffthwDb6su09ffW7Vcn2/ybh06RN+vtoz3JfLhZWI7Tr97xnrfeqGngP3pr8X32iS89ngnK64TMQXmpVzppvlo6fFOccfW9aF32YV3KPnf4T2e1nkbOK35Ze+FR9+lpD3iXbZXW69+1uPaMsPEeYVKT9UUT2zG96mIIZ4p2vng5TGds03rvDTk5YDrtck7g+72lov3sjK1r3va61ryoWEd49TknVT2Roj0xCYrr3+eIuXH112o9EQnq2OLdA1EvD5CXRfK+276qo9878nA60GLTbsW/jTtNtP1E2lK9BjLPjfRpk/b3vdWD10e+v2qHBP+rnENDXwvdajHwnQsN7lD78OQbrpOQq0feA70z0T1mMfzWvTJyuvS6vcAYpMzITZ5U6bFljFN4HJKn1AKa2/SUtfneko36RpF1yw5TP/csp+6Gu6kv786lkbPduoLiQpmz6XTPppL2zcrM8q64+b+hN6r0/6yyildSD8asklbpvJQS44z5L8ardUjaO/IBiopMtQSGJwwwJ9nTJTXUvb+Rt9ri/baW5dW0Yffq6KSMdoyPv5zO5+L+A8MxMHwb5fvJm+FLnKrN4bz//NcGqaPT7j07pbK9yn/ox+tyZvAw6xSca+A65XvN/ENNbXE2EE+gVo2SG8hrwvlfbdqWi9l4V5asGMgFb71gFab4Guuw/3wdtH0FI+2mK74u+a2gX+lRb7vLUWLmzzFPyOXsdbm3hepsn+IWqR40je71ZETn6zUm8LyZ2LTMOr6+JA6G9NrAQCIgakAxJ2DrGRlftLyytlCdVWvUL7TSYc8B+mrGdPMX6ZKQcM1gqjd41FnC0aPp2NWrdGq5XP2kecj8hWIqKWRDvUbrj1XeL2v0ksDv6s2OXtijrlKkJc9kaM1R3vW+zBdX+kvuMQcm+G1RXvtbU2vUK/LR4Qs8GTkeYsRYpPn068/1Z8lRzRnilTwSUVsDQ1fhr3HEq4TOVKRV6Tr5J2mg/qzEPa20VdlR9Ml43kQAq0vmPrjvPEl2lCann84GKXyvI2YWGzq/+ap/5KKftqiz2nG/p7/vJlE3rH3q01BBWP6iBX/1lNDrx+ugGocTTGW15IMvN/kQWzy4FjKYcwrJTVAjq09Qk6ZbP9YvZ+MYzwdmdNEV0dpt+9TOMJX69O1ZR+dsXmDr0Dk2dzTV8PCHI4hdPHuL2lhZ4day2TEy670bqTjaCydO+osPTW1PtujFeKY6CvE/Y8++/wrPRUgteKp9THizrPH1zbTFn1e5Wijt/fkUHFhLAMt2HOQiWw3tHQAUdOhsP1ELig+X/9sd9K8Km3I3seqmqlmrNb/hPsA8XPjD/ysMMZF1W9t0waFUN5Hjd4z6Kc98rVlzNub+p7OPyecVNM5gX76zD+0YxyQPnK9J2S6WD9iAVWI9loAAGIgvQAUqaCTyYWgszZ1qAUTnkTtSy/nKf7aHR8PtTaRWkOkcdKwW6eotT779vSkfsWlVFq2ibasXB62+RsrqGgMav6W6x1Fs184hv665E96SpxytpC7UXtt0V577+KfUOcb7/iWD6hpoouGDqEhu5+hE44/RkuEpPCIZ6J2I54p0e0yDb/meAs+PsqPpLsv3E2lhmZMnqUb1eY18w1/OoSF5m+21DWyH814dTtdvcxQgOEherlAM3oADZrj1grNyg/rLc8SDVIugalbZinXodZc9U/TutRR/2IZvtxWlALLDbcUaCNVbn6P2kZEit9JQ68I9V0fPZ1rdyIVUFUBr6Xz0jibgwMAKEwFoGRHYoilgGNcJ9NHtRB9en5vaMTcWn09/ZX8fWdYzpir6NQtE+lVZ5la4CmaOIW++tVfKG9Eib5GGC0Pq6OvGXGeP35jomkkuphi4xHdTh/v69cT7bWL/kDG5UKmn7dIrM5P1G7EM/E9b0KlR5qY1bGd+J0T9WfxEQU28bpjERSb8iOpYpthSGtl6v/MANq/wz+SEI/Ilv+z5oDhWTWRmr8xvAfksDq2E449R61xGDTnUd914RuSnGsjxNC8Oaup6RbDfaMygNRjqRQKgz76lQLijNpmmvHxmXTtwAjvbWXbu70Dg//cU9Lv6Dg9ZLpvfc4jRAG1dE3AZ4HhtYwt1NMkwftNHsQmD46lHMa8TDdCTRS3qct/3T9***Cy8wzv0Z7HhIaNzL12nzxEdVbaevqkp1edShYeTLqa/vqrN5c5YT7esCPxVFMs62v0jnKtv1j/8PdTw0AEqvUH0/zHvw8j14kv0nQUXq8u4+dvErueor+dhqv3pXGr/YKxaIxM8UELo/QW+ts++eIPeuOT88K9dFJo+0OeHVNE1O64P/gKLEV8nVl3ogXmF+0GdVC2DQSKxJZq3lXmxePJL9n0q63yYKD+geOhp15LpQf/cd+c1mWqR8uMf/lyjIUuysfF5TzUrrn+jRI+x7HMTEQ9GULKaKnfo87rjaaB6B/4PflqjLRsyXP3z4Nul2g2AV/YXNwnuUpf9710f0gUj9JsmiRsJM/29p1LS+c7/6rEMSDffP4tvkrmBVlGnNsvLV/Xyv84or8X4J0e2vr9lQ2zyIDY5ZOQlpQCUSNO2eAtARrEG3npY+UBUFORpFV2B8+EY1+O8OrqO882nWqZdQPFI9XkzCswr3A/rZH5wJ3udJJp3Iuct3rxEbCefuFh9/OTTm9THVL8HYn6dSuH8OsdVVENfqLND7nubdt54pvo8HP4TgvtwGAtCVr4HrMyLRcovHQtA8VyfWn4HacGwB2nYthVR+2ol8z6PJzbjZwIf40TeN5YWgBRWXpdW5sUQmxyITR7EJoeMvEyfyrxDq3Chycr8rMyLWZJfy8P+m6saJh6oYHuz/u9ZCuC8ZaZ4YxOFH2Z8HqvUHEuPes1PbyQ6Muoe2t91RPmx+Cb9dMMienrheDq6vEFfL9iIVTerPyxl9N/Ae0AOO8dmNZw3ORCbPIhNHhxLOYx5pfbv3G7G/7oZ/3kLnA8n0e0sV3g9lb3bQbPbW30DNPDE9+sJd/+gTJApxz9TXmciQhV4EikESZfzLE3/oJQmj9Bm37xnIk3/8z76IP9c+tHdv6LLnnpIGx0KbEIr8Dpye5qm/PyTlccf0D07HqO9aXS+7fyZAABgJ74mcMZSkbFaKZb0ePv/+FwUaagXudrbP1G+NJfrc5BZbtcf46E1RTHiJjCB1zM3jTFL7MeKdn2drM/Fqksd0ECI930XTzqPHBdfbOGOeSLnIh5dpqZKQXHlPErn9bmHfrFtGe0pvNbcBO6ml9VlE/78Gs35fm5KjyeLN52JZfHsJ9w+WDz7YSKdPwuNzazC5RHr/nlePAqR1hdEunZ9pg6/zxJ9ncY0Fm19xul8jNvbZ8W8vtAd31OJvM5E0nlePAoy9y8kk87Esnj2E24fLJ79sFjSWai8I+2H58WjEGl9wep0nhePQrT9GNNYtPVZMuksVN7R9hNuHyye/bBUpfO8eBRk7l9IJp2JZfHsx5jWbX2AWKL9gDgAY5DhJNqXJNm+HcmINTYZrMyLpfq8GQXmFa4PQDJ9A5K9ThLNO5HzFm9eHFtgjQ/3Z0j1eyDq68zZQpcfU03PHvkOXTtqFE0q+RNtPnc9TajrQTdv+j79Xx8nPfT3BrVPCI/y1n9uq7oZD128Uozv0SI6Tfem25sm0m0DtBGtxPqBgyX493MyLds7LeGRwRI5b8mIlF+69QEKSz/ff7zqBtNgGg0ze1DF3/+LjjvgoV9ubUnpaG3xxGb8TOCaqk8+/dI3HyurrxMr+xyl03tANsQmD2KTA7FFltpfMxEkMwgCAKSe6MDNjM+72wlHeNjCLbR2y2waf2sD1YztSaNXOeifH/+LWv6h/xmjFHJ+89Yw9Yeddrf5Ov2mqB4qL2qjhUf4LvQ/pg+L/+a7Waqzsoy8mwbqczplP4uPn6DtZ1Nv7d4jYJ2uUXT3b1vp27c+Mt0bpuSBVqq/tk0558XUP4OGqgYAgPQgpQDU/kPtX9Z0w/+6Gf95C5wPJ9HtQI5MOf6Z8joTIWLR/hm+PX1iU34Qr+w8RF7vBiqnY/VEbbhtbycPiLBBq/3ZvIcOFPfSFhLf1b+V1vN9Ter30KqyIn3UMCdNntakpYfx/rH96OYybT+N65uoHDdHtZyz4jXybtfuoWakpuvnO10Evk8ivm94COph+r2IXG7a+/Zu0/3d/MvX+Pu1BWwT8YahAAAQlumTmauUEhVPjY5YN5n84mVlXgyxyWHn2Bg3+Yp34v4SodIjTcxWx1IUhNRCzxE6VGW+qbDTWUDup/f6fiC+03RQffR4WsnlKxgR9S0+RX8W2ul9TqG+m7WbqU5eU+y7OSreA3LYObaI9PvvPDNlunL9zifvWqKp575Af9MXq800e6zRlxuaXW5+j+hxrtVUJrf/fjcM500OxCYPYpMHx1IOY15S/9KNpRCEpm8AGu6Yzf1d4p0S3S5TGAttCRvjomU5W+msHO3f8pFrTqVBiVbejB6nHL/5tKuqlUrxr3tKGAvrsUzx/gmQdja7qbJrOD1Zqfc1K3SRu2kYdX18iLq++Yqqp24lx+Jp5iHbudB074tU2X8RXReh1hIAAKKT3qYlUgEHhR8AiEYU2JL64ertTRXb9H/Km4eTa+jZNLZQrxlqOqSvRNTScmzMBSPn7PFU7dhDzUkPGwOBjAX1WKZ4t0k3XBNJxb3MzfqUQtCqab2o64M9tGDHQCp86wHlPaAU4Mv9/c7G/p77rnGftvuppNo/giQAAMTHVACSNXoDF3RCTYGsHJ3CyrwYYpMDscmTafnxD9dwhaDA9LB51deRo+htunyt3lxo9ACaUdvsGxBh5+u91IJRTDx76ZVBw9Q+J7hO5LBzbJGIJpmhHNXyKX1VdjRdMp5HZ5ukXK91Wo2PUqjvezp/ZTuppnMC/fSZf5hqI3He5EBs8iA2eXAs5TDmJb0GCABix0Ms87+8vn9zjZ2c9c7PYp28XDGSWfYQhSBjgUc8D1c4UnHBh4/h3b1pf5dx6Grlx+MmolL1+P6Nclb/yPcvvHqcx+4m95zVvn/dxbFXp2uJ7l+FQRAgeSMmFhM1HQrbnPKC4vPparW/GQ/gcZKaZuakoVckdvsJAABAAQigWwUNvcxNt7ZPp+qhBf57zjjOUJ7Pp8Od49JqxCuriGZMgQWhiPR+O4EdxVViWec09Yapgnou1HRlqtEKOqa0UPsCSATXRL66na5eZmjGphTa+Y+QrpH9aNAct/Znh6ONtjxLwc00lXXv9g7E9QgAkCBTASihkRiUD+jHRi33/0sqphCdhRtn3Gta/v4BYzMAD5Xn3q8tK2+mhhuelvpvd7aMamEFxCZHLHlxDcRUOlfKjR4z/ViG6sshCkTZfp2EE1TDaODquVhZJoZYNnz+ijR***WRJLf1izAp9uWEy9E/5x2s7tc9843bG7wEe2cyYp3E9sR+xTooGm7D6OglPa8Y2aM6j/mO5oUgd9CDHe6a/ljJnNTXdUqa9/0WtpmFdo0y5JhOB2ORAbPLgWMrTXbElXwPk7U3Xbvql/o+1/k8pt1t+dTuddaH+JaZ/0d3xg3Lfv6l7L99DZ0zap3/J8ZfvBnJsmqctn9BMly//Li8AyFq7KlbQVMf4oB862Srm2h/wCXlzV+XzlombwTb156aVyg/yLu1z/I9fTNB+cOsDSdQvddF+dxk9Xj856HN+kronUkcuc7v1Tv0hh2o234BWzZO/O/40mmbQQGrQa9x4IIDHF/+Qlj2RDbVtXAjSv/N4EseA+Wop59NKfeh1Y5ppXQAAiFuKmsBp/25xIWjRZmV2s1sd1eZWww85Z+Vw33LPsq20akgJzR+jL1Q+6LO1uQ8A8zq0mwu759T5b4KYBXiI71AiFX5QMIpT/R71IdabwYbmoYeXET2n/xDnkcvynU7tz65QQzWHuQEt13YE5v9ecU8pNZ4AAADhmApAckdi4C+5b6ippU0d8vNz35ef4F/OI+K4ruif0n/8smVUCytkYmyhmk+xwPR0ic3hLaDB1TPJu6k3LVD/oU9eJl8noh9QuPOYybFFIzsvdQhmg8CbwR7TM1Snew0XzLlw48h9nn7vOFFPJTr012+pt15TEWqo5nA3oOXYeECAmrv11gItbvr4yDB1WSpYfZ1YKZOvyWgQmxyITR4cS3m6KzZHe3tr0sUO9cZtY54***+2Vpk7FO+f8jhYWXUlPHP0S9X9rGLVX9dGXaMTyO5t/TyMdk3zLOX3kmhw6ngbS418Mo4u/PUpNB7ClxpdoxP7zqHGm9sMz8P10sHYdDZ5bkPL3At9cMlbhamq6g3jd6fSa0krA9cXXU/+5rcrxmuWbX3z8BLp/4re05NI36NyXBpuus+2P/pMGTS6ivJ7kuy5v+Ob/o1///Qf04JSj1ev1qbWH6Zoyc0Gqy/EuLRlxkMqeO4c6nn2BrvnmYtNr4DzF9mK/V764i5rKfxj1Os/PP1l5/Z/oc+mJr8tMuCbz85f7rgUAgGzh8HZ2JF0A+uzTg/TEpS+Qd63eWVPl79ezkuoobyzRs8ZmbdxUomQ1vXXzfLrRU0v9nxlA+3fo7b6VZQ+5Ngbsz487MVlVYrQyL4bY5MiU2LiTOv8YVZVNJO+qXur7onIHJ5ysjQTXXKcOz6waMpzee74fnd7H/GNTBm5KFqqGJTC2cOvJkOhxdOT2VF7TEX0udllxTfLoYi0uf18y7kyvXE/cl4TxgDOe2VdQRWGIz13ls/jhpZ/S9ZVa87aQn8stbnpyr0sfttms4aGtdHbFcOq7WclzQ5Gv74ovT30//D4Y+Nb3aDyd5WtWF0mi5zsRiV+Tib1PrL5OeFAFcS2kWre9ByyA2ORBbHIgtsiSHwUuJK3w4+vXM8ZFd1+4m0oNIwZ5lm6kyq7h6nLRH+isGf7lssmLLTZW5ofYgvE/zPzFHjT6VeBIVEK49EBccPfdp8c/5c89oK8QO44taOhlveO5lqYPg23s/Ox20QnHH6PtIE4yz1vgMTDfo8g4opg2if4gxvvqhBqZLFNkwnsgrNED1AftfBluBqtce0UDD1LlfebPaWNTt1A89V/Ssf/1b33OwDhUc5gb0IrY+Dvgl7VNNPzXqe3cb+V5s1pGX5NRIDY5EJs8OJbydFdsyQ+CoPwgXDv2UarYKdqG8/Q8rSpTfrSJEYD4R9326bRs93rfjx+1SVxjsd7vRx80oVYf5jNnNVV4B8R+h3aAAKeU/Szk6FdBI1EFpH96+EeG9BD0azncaFjZQhyDBr1gtquq1f8HR/1huqxzntqshpfVzzqTJqq1Ax66f67YZpL/XieQMmqBM+Dmrvx5y8TNYHutvcTX/3LE6vKgz2m15ogL/iXK57L6OW/4k0BJb/Se4W+yFnaoZuUz3nADWmOeGidNXDoEn/kAAGAJKcNgT92i/dAxTYHNGEz/bIdYrhaCDEOC4qaDIFuYkaiM6aFGpYpMGw1rTUD/tmzk6+Q+erBhwBMP1XacZ5hvpr36j+c+Q4+hohTc6wX8Qt3cVdDS9VpGIfDzXGxj+vw2bKOkq83jhEhDNfuWBeSpK71heFp/5nOTtnimRLcBAIDUS+EocNFZmR9ikydTYws3EpUxnfPzjYrV4qaSEnfwzRoV4UbDikemnzc+Bto/+otC3q9IzU8pXPaaIH4Icy1AkXrc8nL30IXbA2sBMoeV5y7Tr5NIMik2MQphKqdk4LzJgdjkQWzy4FjKYcwr+RogAJuqnrqV3Du3qgN1qDf39fVhIHWYarUJXPNwGnhcdlZj8DH44xflNINy6fIx5sKP0NDwpd78Tde/N/2uahIVH/023ZXBfYAAAAAgc6EABFnD6Swgd9MhfY6opeVYGlQUPr1i2yRaOHSwNpCH40T6wVDz/VNUhS5aNc1fq5Rt+J4xaq2OoeO8X2DzNw/d9osvaPRsJ7k7ptEVz2zMqpu8AgAAQHowFYAwqoU8iE0OqXmFGYnKmP7ZF2/401PMNudtjEvtOG+687/i8B+bDM3fFC2ttGTnV9Rsg759GfseiAFikwOxyYPY5EBs8uBYytNdsaEGCGxJHQY7xOhXoUei8qefmPd3X3rjjHV0585ddPWyNnU4YB4Ba2x5Q+jRsLKMOAZTePhr7iD/2HB68zLzMOLbX+4wN38rdGmjxfHx55EeBw0L2RkeIB2FGrQg0sQ3Qg2VHmkCAABrmG6EyiWjRDojZcJ2iC0YYguWzbHxD7BQHbEDtwu3XiArj4nVN0K1MrZUbMcDV/CIbKFkQmxWnu/EX6O1N0JN/HXGfyNUq1+jldshtmCILRiOSbBMiw2jwKUIYpMDsclj9/yshOtEDlyT8uC8yYHY5EFs8uBYymHMC03gAAAA0oh6A9vcRVQSOFJii5tcPc1NTVXh0gPxDW3FsP76pCYbhvgHAMgGviZwXC0kGEtIsaQzsSyZ/aRjOs+LR0Hm/oXuSDemsVTny0Llnep8rUjnefEoyNy/kMp0brLT3u7/wSXSjesy7tsgmvak6vV0NVxDuZeu01NG0e1Nj9JtA/h+Sx5aMOxBGvzne+nib49Sl/L6oklUql6PkEw6E8uszDdUen7+clOzp2T3z/PiUYhnP8f97fqg8z3n+7nU5XiXHhi5nIZtW6GOJijWz88/WT3fQqL5smjpxjQW6374Nba3fxJ3vkxdVl9HQ3efQ40zT9LTDlJ57h66rHMcDf3iDbop710q/WIYTex5KEy6th0z5Xv81/SQayN515bR1FP4dS6nSWUT6TnDjWtjeZ2JpPO8eBRk7l/ojnRjGkt1vixU3qnO14p0nhePgsz9C92RbkxjVuXL7JTOxLJE94M+QFEgtmCILZgdYkubPkB5brr8mGoqeaNeGyQhZwtd57iK1pQ9Sd/UFKoFIPGDWEAfoGCRtovU78Py2NL8fCcaW9KvUSkAlbS4/DcYVuYdG4rIqxdUGmfcS89PvJlWkpbeXtVH3c6XbhyAxMjR5isAVfTzKK/z+bDXQjhJne803w6xBUNswXBMgmVabGgCBwBpp+d/jvMPRd41ilZ2HqK6nAnk/FGFngh2gvMdncfTSq5i/z3H+hafoj6GS+dmcSUlbn+TN0MzN6+DR7Hk9Of1FACA7IICEAAkRPRT8PU7MPUvWENLPuj0rZPHw2Vrm0Wn/ABeMLKWznLV0jsOPU1RuqKD6q9to3t2fKyngC3gfKdE9dSt5N65ld66eT55OycZ7oGmvFW9BbRsr5LePFxPAQDILhgFLkUQmxw4b/JIza/FTYuPn6A2nfFu6k2V9zUT8f2Atk+n6qH842qa1mfHcYb6Q+tw5zhTE6ZonBWvkXd7mX6fJj81vXNDXPtKBVwncoi8rDrfVh9LmZzOAnI3HdLnlLdgy7E0qMifLmIT6RXbJtHCoYNp/hgl0XEi/WBoq7rcpNClP4lPNlyTVkFsctg5NoZjKYcxL9QAAUDc3j+2H91cpjW7aVzfROUT/B2oBa79mUrn4manADKMHmCoxfHQztd7ac0Gw6UDAEBYKAABQNxO73MK9d1cpzZvm7ymmCYGdLjeVbGCpjrG+ztwA0DM1KajY3eTe85qQ98dJ9VsIipVm5j+jXqtvUSvMQud3jhjHd25cxddvayNPEs3UsXOVhpb3kDVJavV55X9owyZDQBgY6YCEI+OYCUr80Ns8iA2OTI+ttHj1CZwu6paqdTl9vXf4A7WzD2nzrY/sHCdyGHn2JLhrCzTmpfyZBieWrznvJ3TzDWrSnp7+yxT+ohVN6vr8p8QYn/f1JRSxTZ9v4H7iAOuSXkQmxx2jo3hWMphzAs1QACQFOfs8VTt2EPNev8N7mA9uHomta87kRb0j2PwAwAAAAALoAAEAMnx7KVXBg0L7qg+4mK1dmhKPCPAAQAAAKSYqQCEUS3kQWxyIDZ5ZObnHwJbma4lun9VkTYMtqF/wWMH89QRqj6n3Vr/BEMzuUyH60QOO8dmNZw3ORCbPIhNHhxLOYx5oQYIAOJm6qPgdmmdsXkY7MD+Bb4+C4b1JGk93KVOQuB8qnChL5Nl6usX51d7/bdbdr7jkQmvEQAAUAACAIiJWtulFx6MzzOJ8TVn4us/+cTF+jPz83SSCa8RACDbmQpAGNVCHsQmB2KTJ5b8HLnfCZry83ub5mOV6vgK8nLUSQictwtZxzFUgSdUWrq+B0IVJuItYKQ6NhmvMVHpet5kQGxyIDZ5cCzl6a7YHO3trRIbpQCA3eTnn0zt7Z/oc+kpP3+5/gwA4sVDaAMAZBOHt7PDVwDiklEinZEyYTvEFgyxBUNswRy5PcnbeUSfi12qj4noW8G1PrxdR9dxvvlYxZNfqNoS7tsUq0SPv8ztAmMI9foTyc+K2Ph8B9amfPLpTSk730ImvEZm5XaZ8BoZYjNDbMFwTIJlS2ymT+VEdpYMK/NDbPIgNjnsHBuz27EUgzkI8RR+kiEztlhefzqfNy5MCMbn***IitmRfY6LS+bwlC7HJgdjkwbGUp7tis1+DeQDICvyvuvGf9cD5VLGq4JMq/PozMQZxfvm130G3WXa+42F8jTyl42sEAAAUgAAAAAAAIIuYCkDcNs5KVuaH2ORBbHLYOTZm52NpJZw3eRCbHIhNHsQmh51jYziWchjzQg0QAAAAAABkDRSAAAAAAAAga5gKQBjVQh7EJgdikwfHMjPhvMmD2ORAbPIgNjnsHBvDsZTDmBdqgAAAAAAAIGugAAQAAAAAAFnDVADCqBbyIDY5EJs88eTHd7TnSQicj4Wdj6WV0vk6SRZikwexyYHY5EFs8uBYymHMCzVAAAAAAACQNVAAAoAggXewxx3tAQAAwC4c3s4OLz8xVgsZR0mIJZ2JZcnsJx3TeV48CjL3L3RHujGNpTpfFirvVOdrRTrPi0dB5v6F7kh35C5SH8HM2zlffxbb8WRimYzzwtIlnefFoxDLfu7M7aE/s8bCzg71MZ7XaUxjscSVTDoLlXeq87UinefFoyBz/0J3pBvTWKrzZaHyTnW+VqTzvHgUZO5f6I50YxqzKl9mp3QmliW6H18BKBm8M+POU83K/BCbPIhNDivyEv19uNaH8+voOs43n0o4b/IgNjnsHBvDsZQDscmD2ORAbJGhTQsAAAAAAGQNUwGIS1RWsjI/xCYPYpMjnWML7PMTOB8LHEs5EJs8iE0OxCYPYpPDzrExHEs5jHmhBggAANIC9wmKZVqaXxAyPXACAAAIBQUgAABICzxIQSzT7PbWkOmBEwAAQCimApCVnaWYlfkhNnkQmxx2jo3hWMqB2ORBbHIgNnkQmxx2jo3hWMphzAs1QAAAAAAAkDVQAAIAgLQUql8PT6H6AAEAAMTKVADCqBbyIDY5EJs8OJbyIDY5ouUVql8PT6H6AMUC500OxCYPYpPDzrExHEs5jHmhBggAAAAAALIGCkAAAAAAAJA1TAUgjGohD2KTA7HJg2MpD2KTI5G8RB+gROC8yYHY5EFsctg5NoZjKYcxL9QAAQBAxhB9gAAAABLlaG9v9erPAQAAAAAAbM3h7ezwFYB4dIREqqIyYTvEFgyxBUNswXBMgiE2M5y3YDgmwRBbMMQWDLEFwzExk5EXmsABAAAAAECWIPr/AZ8Day4LnTyNAAAAAElFTkSuQmCC" lazyloadthumb="1" border="0" alt=""> |
|
相关推荐
6个回答
|
|
这个大家都清楚,时间如何计算,针对上面的原理图
|
|
|
|
|
|
|
|
输入proteus看看就知道了,简单方便
|
|
|
|
我用示波器看的更加准确,主要是想了解计算方式,不可能盲目调整,想在理论计算后在验证。
|
|
|
|
已经上图,在6楼,求计算方式
|
|
|
|
T=1.1*R4*C3
公式里电阻单位为欧姆, 电容单位为F. R4=1M=1000000R,C3=10UF=0.00001F 按你图上的参数计算: T=1.1*1000000*0.00001=11S |
|
|
|
只有小组成员才能发言,加入小组>>
2067个成员聚集在这个小组
加入小组1018 浏览 2 评论
12904 浏览 0 评论
4166 浏览 7 评论
2378 浏览 9 评论
2221 浏览 2 评论
506浏览 2评论
908浏览 2评论
1018浏览 2评论
465浏览 1评论
701浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-25 05:11 , Processed in 1.081507 second(s), Total 86, Slave 70 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号