完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,具有重要的临床诊断和医疗价值。南于脑电信号自身具有非平稳性随机的特点,因此,对其实时滤波具有相当难度。自从Berger 1929年发现脑电信号以来,人们采用多种数字信号处理威廉希尔官方网站
处理分析脑电信号,由于传统的滤波去噪方法所用滤波器一般具有低通特性,因此采用经典滤波法对非平稳信号去噪,降低噪声,展宽波形,平滑信号中突变尖峰的成分,但可能损失这些突变点携带的重要信息,而傅里叶频谱分析仅是一种纯频率分析方法,该方法对时变的非平稳脑电信号无效。 |
|
相关推荐
3个回答
|
|
与传统的傅里叶变换相比较,小波变换是一种多尺度信号分析方法,具有良好的时频局部化特性,非常适合分析非平稳信号的瞬态特性和时变特性,这正是分析 EEG所需要的,EEG中许多病变都是以瞬态形式表现的。只有结合时间和频率进行处理,才能取得更好效果。但小波分解每次只分解上次分解的低频部分,而不分解高频部分,所以高频段分辨率较差。而小波包分解是一种从小波分解延伸出的更细致的分解和重构信号的方法,它不但分解低频部分,而且还能二次分解高频部分,能够很好地将频率分辨率调整到与脑电节律特性相一致,因此小波包分解具有更好的滤波特性。若将小波包方法引入脑电信号分析.不仅可以克服传统脑电分析的不足.还可以改进Mallat算法分析实际脑电中的不足。
脑电信号的数字处理以往采用通用PC机或单片机实现,存在实时性差等缺点。随之,基于FPGA的小波变换在脑电信号数字处理中应运而生,其实时性好。 DSP Builder将Matlab/Simulink设计仿真工具的算法开发、模拟和验证功能和Quartus II软件的HDL综合、模拟和验证功能相结合,为小波变换的FPGA提供良好的平台。 2 一维离散小波(1D-DWT)Mallat改进算法 多分辨率分析是小波分析的核心理论,其Mallat算法是信号小波分解和重构的常用算法。正交小波的分解和重构公式由尺度函数的尺度方程系数确定。假设构造正交小波的尺度函数φ(t)的两尺度方程为: 式中,g(n)=(-1)n-1h(2N-n-1),N为自然数常数。 设信号为: 由于φ(-t)和φ(t-s)为构造正交小波的多分辨率分析尺度函数,因此上述分解和重构公式中取h(n)为h(-n)或h(n-s)均可。为了讨论方便,且不失一般性,可将上述分解公式和重构公式重写为: 带入式(9)得: 则c0(k)=c0(k-2N-1),式(13)得到的信号是式(12)得到信号的延迟。由于序列h(n)和g(n)为因果序列,所以式(13)对应的滤波器为因果滤波器。采用式(7)和式(8)继续分解信号低频分量或低频分量与高频分量.可得多级分解或小波包分解。 |
|
|
|
|
|
|
|
5 结论
利用信号的小波包分解高分辨率的时频关系.在滤波部分选取因果滤波器对脑电信号进行实时滤波。在DSP Builder平台上,结合Mallat算法和模块化设计原则,设计出基于FPGA的流水线结构小波变换系统,这种自上而下的高度模块化设计方法使得系统的升级改动相当方便,将这种基于FPGA的小波变换系统设计应用于脑电信号的实时滤波,是今后的研究方向。 |
|
|
|
只有小组成员才能发言,加入小组>>
2935 浏览 3 评论
27737 浏览 2 评论
3500 浏览 2 评论
4002 浏览 4 评论
基于采用FPGA控制MV-D1024E系列相机的图像采集系统设计
2359 浏览 3 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-11 07:32 , Processed in 0.518777 second(s), Total 51, Slave 41 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号