完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
我使用GPIB控制8753和8720系列网络分析仪来测试微波滤波器。
我不同意Agilent / HP(以及其他公司)发布的测量相位失真为“偏离线性相位”的程序背后的逻辑。 我不使用分析仪来确定与线性相位的偏差,也不使用分析仪来模拟电气长度的变化。 我使用分析仪捕获包裹的相位数据,然后执行所有处理以确定计算机上软件中线性相位的偏差。 我对“偏离线性相位”方法的理解是,通过调整电延迟来增加/减去电气长度,以获得最小的峰 - 峰值。 这应该消除通过DUT的线性相移,只留下线性相位的偏差。 我的理解是,如果我看一下“理想”相位(重建“理想线性相位”),理想相位线的斜率是由于电长度的相位旋转引起的; 它实质上模拟了将无损传输线与长度可变的DUT串联。 我的理解是,改变电长度的效果是旋转实际相位数据集(改变线穿过数据点的斜率并平移其周围的所有点)而不改变线性相位的偏差(因为线性相位) 线与实际测量的相位数据一起旋转)。 这就好像你只是绘制图形,然后将其设置在一个唱机上。 数据点(包括展开阶段和线性阶段)之间的关系保持不变; 它们只是作为一组*旋转*。 据推测,旋转的原因是抵消DUT的电气长度,这应该消除数据的线性相移 - 旋转到不同的角度表示电气长度的简单变化。 所以我不明白为什么,如果你使用最小二乘法或回归法通过在观察到的未包裹的相位数据上拟合一条线来找到线性相位,你不会只是旋转数据集(改变电气长度)这样的 线性相位的斜率为零,然后平移数据集,使得线性相位线在X轴上(其中Y = 0)。 这应该导致偏离线性相位的完美图表,而不需要从未展开的相位中减去线性相位,因为它是0并因此已经减去。 此外,峰 - 峰测量现在很容易,因为与X轴平行的偏差数据允许直接在Y轴上测量峰 - 峰值。 _这就是摩擦:这样做并不会导致偏离线性相位的最小峰峰值 - 经验表明,通常需要增加或减去额外的电气长度,以最大限度地减少峰峰值偏差! _那困扰我。 原因如下:似乎+当理想线性相位线的斜率为0时,您正在看*正确*当DUT的电气长度被消除时,与DUT的线性相位的偏差。 因此,电长度的任何额外的相加或减少表示增加或减小电长度以确定使相位失真最小化所需的*最佳*电长度。 但是......如果你正在做的是试图表征DUT的相位失真,那就不一样了; 事实上,您正在设置电气长度,以补偿DUT的电气长度应该是什么,以获得最小化失真,而不是测量DUT实际电气长度的相位失真! 因此,不是表征DUT,而是表征DUT,如果它的电子长度是理想的...换句话说,要测量由于DUT引起的相位失真,你不应该旋转数据集(加/减电长度)直到到达 一个最小值,但你应该只旋转,直到理想(线性)相位线的斜率为0.然后(然后只有)你看DUT引起的失真。 任何额外的电气长度变化都会在测量中引入误差! 我在这里错过了什么吗? 无论我到哪里,它都会说延迟加/减去+最小化+线性相位的峰 - 峰偏差; 这似乎错了! 顺便说一句,我从8720D / E / ES / ET用户指南的第2章获得了大量这些信息,其中讨论了相位失真和线性相位测量的偏差。 以上来自于谷歌翻译 以下为原文 I use GPIB to control 8753 and 8720 family network analyzers to test microwave filters. I don't agree with the logic behind the procedures published by Agilent/HP (and other companies!) to measure phase distortion as 'deviation from linear phase'. I don't use the analyzer to determine the deviation from linear phase, nor do I use the analyzer to simulate electrical length changes. I use the analyzer to capture the wrapped phase data, and then perform all processing to determine deviation from linear phase in software on a computer. My understanding of the 'deviation from linear phase' methodology is that you add/subtract electrical length by adjusting the electrical delay to obtain a minimum peak-to-peak value. This is supposed to remove the linear phase shift through the DUT leaving only the deviation from linear phase. My understanding also is that if I look at 'ideal' phase (meaining the 'ideal linear phase'), the slope of the ideal phase line is due to phase rotation from electrical length; it in essence simulates placing a lossless transmission line in series with the DUT whose length is changeable. It's also my understanding that the effect of changing the electrical length is to rotate the actual phase dataset (change the slope of the line fit throught the data points and translates all points around it) without changing the deviation from linear phase (since the linear phase line rotates along with the actual measured phase data). It's as if you simply drew the graph, then set it on a record player. The relationship between the data points, both the unwrapped phase and the linear phase, is unchanged; they are simply rotated *as a group*. Supposedly the reason for the rotation is to cancel out the electrical length of your DUT which should remove the linear phase shift from the data - rotation to a different angle represents a simple change of electrical length. So what I don't understand is why, if you use a least-squares or regression to find the linear phase by fitting a line to your observed unwrapped phase data, you wouldn't just rotate the dataset (change the electrical length) such that the slope of the linear phase was zero and then translate the dataset such that the linear phase line was on the X-axis (where Y=0). This should result in a perfect graph of the deviation from linear phase with no need to subtract the linear phase from the unwrapped phase, since it's 0 and therefore already subtracted. In addition, the peak-to-peak measurement is now easy since the deviation data, being parallel to the X-axis, allows measurement of peak-to-peak values directly on the Y axis. _Here's the rub: doing this doesn't result in the minimum peak-to-peak value of the deviation from linear phase - experience shows that usually adding or subtracting additional electrical length is required to minimize the peak-to-peak deviation!!!_ And that bothers me. Here's why: it seems that +when the ideal linear phase line has a slope of 0 you are looking at *exactly* the deviation from linear phase for the DUT when its electrical length has been cancelled out+. So any additional addition or subtraction of electrical length represents increasing or decreasing the electrical length to determine the *optimal* electrical length required to minimize phase distortion. But... if what you are doing is trying to characterize the phase distortion of the DUT, this won't be the same thing; in fact you are setting the electrical length to compensate for what the DUT's electrical length SHOULD be to get that mimimized distortion, not measuring the phase distortion at the actual electrical length of the DUT! So instead of characterizing the DUT, you are characterizing the DUT if it's electical length were ideal... In other words, to measure the phase distortion due to the DUT, you should NOT rotate the dataset (add/subtract electrical length) until reaching a minimum value, but rather you should rotate ONLY until the slope of the ideal (linear) phase line is 0. Then (and ONLY then) are you looking at the distortion caused by the DUT. Any additional electrical length changes introduce error in the measurement!!! Am I missing something here? Everywhere I look it says to add/subtract delay to +minimize+ peak-to-peak deviation from linear phase; that seems WRONG! By the way, I got a lot of this information from Chapter 2 of the 8720D/E/ES/ET user's guide where it talks about phase distortion and deviation from linear phase measurements). |
|
相关推荐
10个回答
|
|
> {quote:title = TheGris写道:} {quote}>我>我错过了什么吗?
无论我到哪里,它都会说延迟加/减去+最小化+线性相位的峰 - 峰偏差; 这似乎错了! >是的,你是,不,不是。 原因如下:线性相位代表一个恒定的群延迟,不会使调制信号的包络失真,但只能通过群延迟时间对其进行延迟,完全保留。 但是,如果相位斜率不是完全线性的,则调制信号的不同部分将获得不同的相位响应或不同的延迟,因此调制的包络将改变,从而引起诸如调制信号上的增加的误差矢量幅度(EVM)之类的问题。 因此,要找出最坏情况下的相位偏差,您需要选择最小化波段上峰峰值相位偏差的线。 最小二乘拟合最小化相位偏差曲线下面积的 - 方形 - 这与最小化最大p-p误差不同。 如何计算相位斜率最小化最大p-p误差......这很难做到。 幸运的是,其中一位软件工程师拥有应用数学博士学位(曾经是大学教授),所以他找到了一种明确计算它的方法。 它在PNA系列仪器中作为公式编辑器功能可用。 您可以使用最小二乘法,最小峰值计算偏差,或者(我不知道为什么我们添加了这个)最小平方峰值。 但是,所有这些都在http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119979552.html的第5章,第5.2.6.3节中详细记录了(我知道,再次鞭打书,但我确实涵盖了这个主题) 并给出两种情况的好处,包括仅由于相移引起的调制信号失真的例子(第11页)。) 以上来自于谷歌翻译 以下为原文 > {quote:title=TheGris wrote:}{quote} > I> Am I missing something here? Everywhere I look it says to add/subtract delay to +minimize+ peak-to-peak deviation from linear phase; that seems WRONG! > Yes, you are, and no it's not. Here's why: Linear phase represents a constant group delay and will not distort the envelope of a modulated signal, but only delay it, perfectly preserved, by the group delay time. But, if the phase slope is not perfectly linear, different portions of a modulated signal will get different phase responses or different delays, and so the modulated envelope will change causing problems like increased Error Vector Magnitude (EVM) on modulated signals. So, to find the worst case phase deviation, you need to choose that line which minimizes the peak-to-peak phase deviation across a band. Least squares fit minimizes the -square- of the area under the phase deviation curve which is NOT the same as minimizing the maximum p-p error. How do you compute the what phase slope minimizes the maximum p-p error...it's hard to do. Fortunately, one of software engineers has a Ph.D in applied mathematics (and used to be a university professor) so he sorted out a way to explicitly compute it. And it is avalable in the PNA-family of instruments as an equation editor function. You can compute deviation with least squares, least peak, or (and I don't know why we added this) least square peak. But, all this is thoroughly documented in Chapter 5, seciont 5.2.6.3 of http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119979552.html (I know, flogging the book again, but I do cover the topic and give nice pcitures of both cases, including an example of distortion on a modulated signal due to phase shift only (pg 11) .) |
|
|
|
脑洞大赛9 发表于 2019-8-23 12:04 > {quote:title = Dr_joel写道:} {quote} >> {quote:title = TheGris写道:} {quote} >>我>我在这里遗漏了什么? 无论我到哪里,它都会说延迟加/减去+最小化+线性相位的峰 - 峰偏差; 这似乎错了! >>>是的,你是,不,不是。 原因如下:>>线性相位代表一个恒定的群延迟,不会使调制信号的包络失真,但只能通过群延迟时间对其进行延迟,完全保留。 但是,如果相位斜率不是完全线性的,则调制信号的不同部分将获得不同的相位响应或不同的延迟,因此调制的包络将改变,从而引起诸如调制信号上的增加的误差矢量幅度(EVM)之类的问题。 >>因此,要找出最坏情况下的相位偏差,您需要选择最小化波段上峰峰值相位偏差的线。 >>最小二乘拟合最小化相位偏差曲线下面积的 - 方形 - 这与最小化最大p-p误差不同。 >>>如何计算相位斜率最小化最大p-p误差...这很难做到。 幸运的是,其中一位软件工程师拥有应用数学博士学位(曾经是大学教授),所以他找到了一种明确计算它的方法。 它在PNA系列仪器中作为公式编辑器功能可用。 您可以使用最小二乘法,最小峰值计算偏差,或者(我不知道为什么我们添加了这个)最小平方峰值。 >>但是,所有这些都在http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119979552.html的第5章,第5.2.6.3节中详细记录了>>(我知道,再次鞭打书,但我 确实涵盖了这个主题,给出了两种情况下的好处,包括仅由于相移引起的调制信号失真的例子(第11页)。)Joel博士,如果我理解正确的话,最小化Min-Max偏差(这是 在视觉上容易做到)给出了相同的结果,以最小化BFSL线性回归到相位数据的MSE,但线性回归需要一段时间来计算。 但是BFSL在代码中更容易实现。 Spacecase编辑:Spacecase于2013年1月19日下午4:43 以上来自于谷歌翻译 以下为原文 > {quote:title=Dr_joel wrote:}{quote} > > {quote:title=TheGris wrote:}{quote} > > I> Am I missing something here? Everywhere I look it says to add/subtract delay to +minimize+ peak-to-peak deviation from linear phase; that seems WRONG! > > > Yes, you are, and no it's not. Here's why: > > Linear phase represents a constant group delay and will not distort the envelope of a modulated signal, but only delay it, perfectly preserved, by the group delay time. But, if the phase slope is not perfectly linear, different portions of a modulated signal will get different phase responses or different delays, and so the modulated envelope will change causing problems like increased Error Vector Magnitude (EVM) on modulated signals. > > So, to find the worst case phase deviation, you need to choose that line which minimizes the peak-to-peak phase deviation across a band. > > Least squares fit minimizes the -square- of the area under the phase deviation curve which is NOT the same as minimizing the maximum p-p error. > > How do you compute the what phase slope minimizes the maximum p-p error...it's hard to do. Fortunately, one of software engineers has a Ph.D in applied mathematics (and used to be a university professor) so he sorted out a way to explicitly compute it. And it is avalable in the PNA-family of instruments as an equation editor function. You can compute deviation with least squares, least peak, or (and I don't know why we added this) least square peak. > > But, all this is thoroughly documented in Chapter 5, seciont 5.2.6.3 of http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119979552.html > > (I know, flogging the book again, but I do cover the topic and give nice pcitures of both cases, including an example of distortion on a modulated signal due to phase shift only (pg 11) .) Dr Joel, If I understand it correctly, minimizing the Min-Max Deviation (which is easy to do visually) gives equivalent results to minimizing the MSE of the linear regression of the BFSL to the phase data, but the linear regression takes a while to compute. But BFSL is easier to implement in code. Spacecase Edited by: Spacecase on Jan 19, 2013 4:43 PM |
|
|
|
如果我理解你的首字母缩略词(MSE =均方误差?并且BFSL最适合直线?),我不是,不一样。
最小化峰峰值阶段是一项独特的功能,与MSE不同。 一个简单的例子是在波纹轨迹中间的一个非常窄的p-p尖峰的功能。 大纹波将具有大的MSE并且使p-p尖峰淹没,但是如果品质因数是最小偏差,则p-p尖峰是唯一重要的。 事实上,有一种矩阵方法可以找到最大化p-p的斜率值,但它会变为N ^ 2(N是样本点的数量)。 最小二乘拟合比N * logN快得多。 以上来自于谷歌翻译 以下为原文 If I understand you acronyms (MSE=Mean Square Error? and BFSL is best fit straight line?), I'd so no, not quite the same. Minimzing the peak-to-peak phase is a unique function, not the same as MSE. A simple example is a funciton very narrow p-p spike in the middle of a ripply trace. The large ripple will have a large MSE and swamp the p-p spike, but still if the figure of merit is minimum deviation, the p-p spike is the only thing that matters. In fact there is a matrix method to find the value of slope whcih mimizes the maximum p-p, but it goes as N^2 (N being the number of sample points). Least square fit goes as N*logN so much faster. |
|
|
|
首先,感谢您的回复。
但我确实有一个问题。 它与峰峰值有关。 我一直认为p-p是样本中最坏情况的变化(最大变化) - 但我被告知p-p *真的*意味着你必须找到任何相邻的峰到谷变化的最大值。 关键是它们必须相邻 - 变异将找到最高峰和最低谷并使用它们。 (1)一般来说这是正确的吗? (2)具体而言,是通过旋转样品不正确来最小化“线性偏差变化(VDLP)”得分中的样本变化吗? (3)这是否意味着我必须想出一个'相邻波峰到相邻波谷'算法来找到我希望旋转样本的p-p VDLP分数以最小化? 以上来自于谷歌翻译 以下为原文 First, thanks for the responses. But I do have a question. It has to do with peak-to-peak. I always thought of p-p as being the worst-case variation (max variation) in a sample - but I have been told that p-p *really* means that you have to find the maximum value of any adjacent peak-to-trough change. The key is that they have to be adjacent - variation would find the highest peak and the lowest trough and use those. (1) is this correct in general? (2) specifically, is minimizing the sample variation in the 'variation from linear deviation (VDLP)' scores by rotating the sample NOT correct? (3) does that mean I have to come up with an 'adjacent peak to adjacent trough' algorithm to find the p-p VDLP scores I want to rotate the sample to minimize? |
|
|
|
Doc Joel ...很高兴知道不仅仅是我们的客户群不知道他们为什么要指定,或者他们如何指定线性阶段!
我们决定告诉他们我们如何衡量它,让他们只是这样说。 如果他们真的指定我们也不接受试图通过使用纹波规格在chebyshev滤波器中指定VSWR的客户的规格......波纹是波纹! 因此,对于线性相位表征,我执行以下操作:通过相位数据(最小二乘法)拟合线以获得“理想”线性相位; 从实际测量的相位数据中减去“理想”相位,只留下DLP(偏离线性相位); 旋转DLP数据集,直到它的变化最小化; 最小的变化是我称之为VDLP(DLP的变化),这是我们在内部用于线性相位表征的值。 请注意,VDLP(如我所做的那样)将始终与在旋转的DLP曲线上进行真正的峰峰值(相邻峰值/谷值)分析一样大或更大,但从不小; 所以这是一个更保守和一致的措施。 我们在继续之前过滤相位数据中的噪声。 这个程序模拟了我的威廉希尔官方网站 人员过去必须在网络分析仪上使用电子延迟功能来旋转数据集... ...然而,我做的不同 - 我尝试真正的峰到峰评估来找到最坏的 - 使用小波算法识别峰值/谷值的freq窗口中的case(max)纹波值。 我做了类似于相位测试的事情,通过测量的通带插入损耗曲线拟合曲线(11阶多项式)来找出实际的插入损耗; 从插入损耗曲线中减去该值会产生纹波。 我们的想法是测量值包括实际的滤波器插入损耗加上纹波(加上我们忽略的误差)。 一旦产生峰值/谷值列表,我计算每个相邻峰值/谷值处的绝对纹波值,这是每个相邻峰值和谷值(以及谷值和峰值!)的插入损耗之差的绝对值,然后查找 这些值的最大值报告为最坏情况波纹。 我们在处理之前过滤纹波数据中的噪声...记住我们只对测量无源器件,微波滤波器感兴趣...所以我们从未看到数据中的“尖峰”,如果这样,噪声滤波会掩盖 是一个有源设备(如放大器)...过滤器非常可预测,响应相对平稳....这些方法对你有意义吗? 你能建议更好的方法吗? 以上来自于谷歌翻译 以下为原文 Doc Joel... It's so nice to know that it isn't just OUR customer base that has no idea why they specify, or how they specify linear phase! We've decided to tell them how we measure it and let them only spec it that way. If they are really specifying We also don't accept specs from customers who are trying to specify VSWR in chebyshev filters by using a ripple spec... ripple is ripple!!! So for linear phase characterization I do the following: fit a line through the phase data (least squares) to get the 'ideal' linear phase; subtract the 'ideal' phase from the actual measured phase data, leaving only the DLP (deviation from linear phase); rotate the DLP dataset until it's variation is minimized; the minimum variation is what I call the VDLP (variation in DLP), which is the value we use in house for linear phase characterization. Note that the VDLP (derived as I did) will always be as big OR bigger than if we did a true peak-to-peak (adjacent peak/trough) analysis on the rotated DLP curve, but never smaller; so it's a more conservative and consistent measure. We filter noise from the phase data before proceeding. This procedure modeled what my techs used to have to do manually on the network analyzers using the electrical delay feature to rotate the dataset... For ripple however I do it differently - I attempt true peak-to-peak evaluation to find the worst-case (max) ripple value in a freq window using wavelet algorithms to identify peaks/troughs. I do something similar to the phase test, fitting a curve (11th order polynomial) through the measured pas***and insertion loss curve to find the actual insertion loss; subtracting that from the insertion loss curve yields the ripple. The idea is that the measured values consist of the actual filter insertion loss plus ripple (plus error which we ignore). Once the peak/trough list is generated, I calculate the absolute ripple value at each adjacent peak/trough, which is the absolute value of the difference between the insertion loss of each adjacent peak and trough (and trough and peak!) and then find the max of those values to report as worst-case ripple. We filter noise from the ripple data before processing also... Remember we are only interested in measuring passive devices, microwave filters... so we don't ever see the kinds of 'spikes' in data that noise filtering would mask if this were an active device (like an amplifier)... Filters are pretty predictable, relatively smooth in response.... Do these methods make sense to you? Can you suggest better methods? |
|
|
|
dipper006 发表于 2019-8-23 12:55 > {quote:title = TheGris写道:} {quote}> Doc Joel ... >>很高兴知道不仅仅是我们的客户群不知道他们为什么要指定,或者他们如何指定线性阶段! 我们决定告诉他们我们如何衡量它,让他们只是这样说。 如果他们真的指定>>我们也不接受试图通过使用纹波规范在chebyshev过滤器中指定VSWR的客户的规格......波纹是波纹! >>那么对于线性相位表征,我做了以下几点:通过相位数据(最小二乘法)拟合线以获得“理想”线性相位; 从实际测量的相位数据中减去“理想”相位,只留下DLP(偏离线性相位); 要迂腐,这实际上是“偏离最小二乘阶段”。 您使用最小二乘来定义“行”,但其他定义有效。 >旋转DLP数据集,直到其变化最小化; 困难在于以自动方式执行此操作。 这就是我们在PNA中使用DFLP方程编辑器功能的方法。 >最小变化是我称之为VDLP(DLP的变化),这是我们在内部用于线性相位表征的值。 请注意,VDLP(如我所做的那样)将始终与在旋转的DLP曲线上进行真正的峰峰值(相邻峰值/谷值)分析一样大或更大,但从不小; 所以这是一个更保守和一致的措施。 我们在继续之前过滤相位数据中的噪声。 这个程序模拟了我的威廉希尔官方网站 人员过去必须在网络分析仪上使用电子延迟功能来旋转数据集......>>对于涟漪然而我做的不同 - 我尝试真正的峰到峰评估来找到 使用小波算法识别峰值/谷值的频率窗口中的最坏情况(最大)纹波值。 我做了类似于相位测试的事情,通过测量的通带插入损耗曲线拟合曲线(11阶多项式)来找出实际的插入损耗; 从插入损耗曲线中减去该值会产生纹波。 我们的想法是测量值包括实际的滤波器插入损耗加上纹波(加上我们忽略的误差)。 一旦产生峰值/谷值列表,我计算每个相邻峰值/谷值处的绝对纹波值,这是每个相邻峰值和谷值(以及谷值和峰值!)的插入损耗之差的绝对值,然后找到 这些值的最大值报告为最坏情况波纹。 我们在处理之前过滤纹波数据中的噪声...>如果您知道滤波器顺序并且符合其预期值,这将特别有效。 >请记住,我们只对测量无源器件,微波滤波器感兴趣......因此,如果这是一个有源器件(如放大器),我们就不会看到噪声滤波会掩盖数据中的“尖峰”...... 过滤器非常可预测,响应相对平稳.... >>这些方法对你有意义吗? 你能建议更好的方法吗? 以上来自于谷歌翻译 以下为原文 > {quote:title=TheGris wrote:}{quote} > Doc Joel... > > It's so nice to know that it isn't just OUR customer base that has no idea why they specify, or how they specify linear phase! We've decided to tell them how we measure it and let them only spec it that way. If they are really specifying > > We also don't accept specs from customers who are trying to specify VSWR in chebyshev filters by using a ripple spec... ripple is ripple!!! > > So for linear phase characterization I do the following: fit a line through the phase data (least squares) to get the 'ideal' linear phase; subtract the 'ideal' phase from the actual measured phase data, leaving only the DLP (deviation from linear phase); To be pedantic, this is actually "Deviation From Least-Squares Phase". You are using least-squares to define the "line" but other definitions are valid. >rotate the DLP dataset until it's variation is minimized; The difficulty is doing this in an automated way. This is what we do with the DFLP equation editor function in the PNA. >the minimum variation is what I call the VDLP (variation in DLP), which is the value we use in house for linear phase characterization. Note that the VDLP (derived as I did) will always be as big OR bigger than if we did a true peak-to-peak (adjacent peak/trough) analysis on the rotated DLP curve, but never smaller; so it's a more conservative and consistent measure. We filter noise from the phase data before proceeding. This procedure modeled what my techs used to have to do manually on the network analyzers using the electrical delay feature to rotate the dataset... > > For ripple however I do it differently - I attempt true peak-to-peak evaluation to find the worst-case (max) ripple value in a freq window using wavelet algorithms to identify peaks/troughs. I do something similar to the phase test, fitting a curve (11th order polynomial) through the measured pas***and insertion loss curve to find the actual insertion loss; subtracting that from the insertion loss curve yields the ripple. The idea is that the measured values consist of the actual filter insertion loss plus ripple (plus error which we ignore). Once the peak/trough list is generated, I calculate the absolute ripple value at each adjacent peak/trough, which is the absolute value of the difference between the insertion loss of each adjacent peak and trough (and trough and peak!) and then find the max of those values to report as worst-case ripple. We filter noise from the ripple data before processing also... > this would be especially effective if you know the filter order and fit to it's expected value. > Remember we are only interested in measuring passive devices, microwave filters... so we don't ever see the kinds of 'spikes' in data that noise filtering would mask if this were an active device (like an amplifier)... Filters are pretty predictable, relatively smooth in response.... > > Do these methods make sense to you? Can you suggest better methods? |
|
|
|
我的理解是,当您旋转数据集和理想相位线时,您将取消DUT电气长度。
当旋转的线性相位线(内插的“理想相位”)的斜率为0时,这种消除是精确的 - 它是平坦的。 这可能不会导致最小的峰 - 峰偏差曲线。 附加旋转表示电长度的附加变化(加法或减法),以补偿DUT引入非群延迟的附加相位失真的事实,并且可以通过电长度调节。 因此,如果您想要表征零件的实际行为,您应该只旋转相位数据/理想相位,直到线性相位为0的斜率。附加旋转告诉您必须提供(或移除)对DUT的附加电气长度 为了最小化相位失真。 在大多数情况下,“旋转直到峰峰值偏差最小化”不仅仅取消了DUT的电气长度......我错了吗? 如果是这样,为什么? 以上来自于谷歌翻译 以下为原文 My understanding is that when you rotate the dataset and the ideal phase line, you are cancelling out the DUT electrical length. This cancellation is exact when the slope of the rotated linear phase line (the interpolated "ideal phase") is 0 - it's flat. This may not result in the minimum peak-to-peak deviation curve. Additional rotation represents additional change (addition or subtraction) of electrical length to compensate for the fact that the DUT introduces additional phase distortion that is NOT group delay, and that can be adjusted out via electrical length. So if you want to characterize the part's ACTUAL BEHAVIOR, you should only rotate the phase data/ideal phase until the linear phase is a slope of 0. Additional rotation tells you what electrical length you must provide (or remove) IN ADDITION to the DUT in order to minimize the phase distortion. The "rotate until the peak-to-peak deviation is minimized" in most cases does more than just cancel out the DUT's electrical length... Am I wrong? If so, why? |
|
|
|
dipper006 发表于 2019-8-23 13:22 > {quote:title = TheGris写道:} {quote}>我的理解是,当您旋转数据集和理想相位线时,您将取消DUT电气长度。 当旋转的线性相位线(内插的“理想相位”)的斜率为0时,这种消除是精确的 - 它是平坦的。 >难以理解的是,当你说“理想相线的斜率”时。 有人可能会认为“理想相位线”是最小二乘拟合线,但为什么最小二乘拟合比最小 - 最大拟合,或最小线性拟合或其他拟合更理想。 这就是定义变得随意的地方。 (可能在我之前的帖子中并不清楚。而且总有一个问题是你的频率跨度有多大。 以上来自于谷歌翻译 以下为原文 > {quote:title=TheGris wrote:}{quote} > My understanding is that when you rotate the dataset and the ideal phase line, you are cancelling out the DUT electrical length. This cancellation is exact when the slope of the rotated linear phase line (the interpolated "ideal phase") is 0 - it's flat. > The diffculty is when you say "the slope of the ideal phase line". One might impute that the "ideal phase line" is the least-squares-fit line, but why should least-squares fit be more ideal than min-max fit, or least-linear fit or some other fit. That's where the definition becomes arbitrary. (might not have been clear in my earlier post. And there is always the issue of how wide of frequency span you do the fit over. |
|
|
|
以上是关于线性相位的偏差;
不涟漪......! 以上来自于谷歌翻译 以下为原文 The above is in reference to Deviation from Linear Phase; not ripple...! |
|
|
|
正如我之前所说,答案是“这取决于你为什么试图表征偏离线性相位”在你的定义中,据我所知,你将相位的一些平均值返回到零(如何定义零,是 它在过滤器的中心,或在带的开始和停止?)然后查看与该线的偏差。 这可能是针对某些特性,例如“理想化相位响应”或某些特性。 但是,如果目的是辨别具有某些特定BW的调制信号将如何使调制信号的相位部分被相位响应所扰乱,那么它仅与来自任意线的偏差有关,而不是来自零线。 因此,我不会说你看零相位是错误的(同样,确定零是如何确定的),但你的定义无助于阐明调制信号(如EVM)的失真。 如果您要匹配过滤器,您可能会找到一个过滤器的最小延迟,然后将所有其他过滤器设置为相同的值,那么您希望保持一定的相位方面的一种情况。 以上来自于谷歌翻译 以下为原文 As I indicated earlier, the answer is "It depends upon WHY you are trying to characterize deviation from linear phase" In your definition, as I understand it, you are returning some average value of the phase to zero (how to define zero, is it at the center of the filter, or at the band start and stop?) and then looking at the deviation from that line. This might be for some characteristic such as "idealized phase response" or some such. BUT, if the purpose is to discern how a modulated signal with some specificed BW would have the phase portion of the modulated signal distored by the phase response, then it only matters the deviation from an arbitary line, not from a zero line. So, I won't say you are wrong to look at zero phase (again, how zero is determined is in question) but your definition doesn't help in illuminating the distortion of a modulated signal (such as EVM). One case where you would want to maintain some constant aspect of phase is if you were matching filters, where you would find the minimum delay for one filter, and then set all the others to the same value. |
|
|
|
只有小组成员才能发言,加入小组>>
1396 浏览 0 评论
2424 浏览 1 评论
2275 浏览 1 评论
2113 浏览 5 评论
3028 浏览 3 评论
1493浏览 1评论
关于Keysight x1149 Boundary Scan Analyzer
840浏览 0评论
N5230C用“CALC:MARK:BWID?”获取Bwid,Cent,Q,Loss失败,请问大佬们怎么解决呀
1257浏览 0评论
1397浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-3-6 17:12 , Processed in 1.745238 second(s), Total 95, Slave 79 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191