完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
PWM呼吸灯 呼吸灯是指灯光由高到暗的逐渐变化,感觉好像是人在呼吸。所谓的“呼吸灯”就是根据人的呼吸频率通过光的强弱表现出来:呼吸分为两个过程,一个是“呼”的过程,一个是“吸”的过程。其广泛应用于手机之上,并成为各大品牌手机的卖点之一。如果你的手机里面有未处理的通知,比如说未接来电,未查收的短信等,呼吸灯就会由暗到亮的变化,像呼吸一样那么有节奏,起到一个通知提醒的作用。 脉宽调制(Pulse Width Modelation,PWM),是利用微处理器/FPGA的数字输出来对模拟电路进行控制的一种非常有效的威廉希尔官方网站
,广泛应用在测量、通信、功率控制与变换等许多领域。PWM数字信号从处理器到被控系统都是数字形式,无需数模转换。 航模中的控制信号大多是PWM信号,比如FUTABA,JR等舵机的控制都采用PWM方式。 发射机给接收机一串脉冲,比如基础脉宽是100ms,那么发射机的脉宽变大时,比如增大为150ms,那么接收机就控制舵机正向旋转,发射的脉宽减小时,比如减小为50ms,那么接收机就控制舵机逆向旋转。 PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 通俗来说,PWM就是连续的、一定比例占空比的脉冲信号。通过控制占空比来实现不同的控制。简单地,我们可以认为PWM就是一种方波。如图所示: 图 176 PWM波形图 PWM实现呼吸灯的原理 当输出为低电平时控制LED灯,当输出低电平时,灯亮,当输出高电平时,灯灭。如果一直输出低电平,则灯一直亮;如果一直输出高电平,则灯一直暗;如果50%时间输出低电平,50%时间输出高电平,则灯会暗一些。所以占空比会影响到LED灯的明暗程度。 另一个影响LED亮度的是PWM波形的周期。试想一下,如果PWM的周期是2秒,占空比为50%,那我们看到的是将是LED暗1秒、亮1秒,而不是半亮的状态。只是我们提高PWM的周期,才能看到半亮的状态。根据经验值,PWM的周期是10毫秒为宜。 也就是说,控制高低电平的时间,也就是占空比(高电平占周期的百分比,例如上面是60%),以及控制PWM的周期,就可以控制灯的亮暗程度。 2 设计目标 本工程实现一个控制LED灯亮度的功能,具体要求:上电后,LED灯显示接近于灭,然后在10秒内,每隔2秒,亮度变化一次,逐渐变亮。在下一个10秒内,每隔2秒,亮度变化一次,逐渐变暗。总而言之,就是20秒一次循环,每隔2秒变化一次,前10秒亮度增大,后10秒,亮度减小。 开发板的硬件原理图 图 177 上板效果图如下图所示。 图 178 3 设计实现3.1 顶层信号 新建目录:D:mdy_bookpwmled。在该目录中,新建一个名为pwmled.v的文件,并用GVIM打开,开始编写代码。 我们先分析一下板子上的LED灯。板子上的每个LED灯,都有一个信号与之相连,这个信号一端连着LED,另一端连着FPGA。FPGA控制这根线,就可以控制LED灯的亮、灭以及亮度。当FPGA将这根线输出为0时,LED要亮;当FPGA将这根线输出为1时,这个LED灯就灭;FPGA通过输出一个PWM波形,并且控制占空比,就可以实现LED的亮度控制。 下面表格表示了硬件电路图的连接关系。
综上所述,我们这个工程需要三个信号,时钟clk,复位rst_n和输出信号led。将module的名称定义为pwmled。为此,代码如下:
其中clk、rst_n是输入信号,led是输出信号,并且三个信号都是1比特的,根据这些信息,我们补充输入输出端口定义。代码如下:
3.2 信号设计 我们首先分析一下需求:上电后,LED灯显示接近于灭,然后在10秒内,每隔2秒,亮度变化一次,逐渐变亮。在下一个10秒内,每隔2秒,亮度变化一次,逐渐变暗。总而言之,就是20秒一次循环,每隔2秒变化一次,前10秒亮度增大,后10秒,亮度减小。 另外,根据PWM的原理,通过控制PWM的占空比就可以实现亮度控制。占空比越大(高电平时间越长,低电平时间越低),灯的亮度越暗。 根据这个原理,可以翻译成:FPGA控制led信号,输出PWM波形,并调整占空比。调整方法:20秒一次循环,每隔2秒变化led的占空比一次,前10秒占空比变大,后10秒,占空比变小。 由于需求没有说明具体的占空比是多少,那我们就自行制定一下占空比,读者可以在上板时,根据视觉效果,调整占空比的大小。自行制定的占空比如下: 第1个2秒内,占空比为95%; 第2个2秒内,占空比为85%; 第3个2秒内,占空比为70%; 第4个2秒内,占空比为50%; 第5个2秒内,占空比为20%; 第6个2秒内,占空比为20%; 第7个2秒内,占空比为50%; 第8个2秒内,占空比为70%; 第9个2秒内,占空比为85%; 第10个2秒内,占空比为95%。 然后按上面的过程循环。 PWM的波的周期,根据经验值可以设为10毫秒。 根据上述分析,这个led信号的变化情况如下: 图 179 第1次持续时间2秒,每10毫秒输出一个PWM波(9.5毫秒时变低); 第2次持续时间2秒,每10毫秒输出一个PWM波(8.5毫秒时变低); 第3次持续时间2秒,每10毫秒输出一个PWM波(7.0毫秒时变低); 第4次持续时间2秒,每10毫秒输出一个PWM波(5.0毫秒时变低); 第5次持续时间2秒,每10毫秒输出一个PWM波(2.0毫秒时变低); 第6次持续时间2秒,每10毫秒输出一个PWM波(2.0毫秒时变低); 第7次持续时间2秒,每10毫秒输出一个PWM波(5.0毫秒时变低); 第8次持续时间2秒,每10毫秒输出一个PWM波(7.0毫秒时变低); 第9次持续时间2秒,每10毫秒输出一个PWM波(8.5毫秒时变低); 第10次持续时间2秒,每10毫秒输出一个PWM波(9.5毫秒时变低); 从中我们可以得到有以下几个计数器:计数10毫秒时间的计数器;计数2秒时间的计数器以及计数第1~10次的计数器。 计数10毫秒的计数器的设计思路。本工程的工作时钟是50MHz,即周期为20ns,计数器计数到10_000_000/20=500_000个,我们就能知道10毫秒时间到了。另外,由于该计数器是不停地计数,永远不停止的,可以认为加1条件一直有效,可写成:assign add_cnt==1。该计数器一共要数500_000个。综上所述,该计数器的代码如下。
2秒时间计数器的设计思路。本工程的工作时钟是50MHz,即周期为20ns,计数器计数到2_000_000_000/20=100_000_000个,我们就能知道2秒时间到了。这是一种设计思路。但我们也可以以10毫秒为基础,通过数有2_000_000_000/10_000_000=200个10毫秒时间,就能知道2秒时间到了。所以该计数器的加1条件是end_cnt0,一共有数200个。综上所述,该计数器的代码如下。
第1~第10次计数器的设计思路。该计数器是每隔2秒就会加1,也就是end_cnt1的时候,就会加1;该计数器一共要数10个。综上所述,该计数器的代码如下。
有了这三个计数器,我们来思考输出信号led的变化。概括起来,led有两个变化点:变0和变1。变0的原因都是在10毫秒计数器数到一定个数时变0,但这个计数是会变的,那么我们可以假设为x,也就是数到x个时,led变0。变1则是由于10毫秒计数时间到了,也就是end_cnt0时,led变1 。综上所述,led信号的代码如下:
最后我们再来思考变量x。x是led变0的时间。这个时间在不同的次数时,值会不相同。例如第1次是数到9.5毫秒(cnt0数到475_000个),第2次则是在8.5毫秒(cnt0数到425_000个)。也就是说x的值与第几次有关,即与cnt2有关。根据题意,可知x的代码如下:
此次,主体程序已经完成。接下来是将module补充完整。 3.3 信号定义 接下来定义信号类型。 cnt0是用always产生的信号,因此类型为reg。cnt0计数的最大值为500_000,需要用19根线表示,即位宽是19位。因此代码如下:
add_cnt0和end_cnt0都是用assign方式设计的,因此类型为wire。并且其值是0或者1,1个线表示即可。因此代码如下:
cnt1是用always产生的信号,因此类型为reg。cnt1计数的最大值为200,需要用8根线表示,即位宽是8位。因此代码如下:
add_cnt1和end_cnt1都是用assign方式设计的,因此类型为wire。并且其值是0或者1,1根线表示即可。因此代码如下:
cnt2是用always产生的信号,因此类型为reg。cnt2计数的最大值为9,需要用4根线表示,即位宽是4位。因此代码如下:
add_cnt2和end_cnt2都是用assign方式设计的,因此类型为wire。并且其值是0或者1,1根线表示即可。因此代码如下:
led是用always方式设计的,因此类型为reg。并且其值是0或者1,1根线表示即可。因此代码如下:
x是用always方式设计的,因此类型为reg。并且其值是最大是475_000,需要19根线表示即可。因此代码如下:
至此,整个代码的设计工作已经完成。下一步是新建工程和上板查看现象。 |
|||
相关推荐
|
|||
838 浏览 0 评论
矩阵4x4个按键,如何把识别结果按编号01-16(十进制)显示在两个七段数码管上?
1040 浏览 0 评论
871 浏览 0 评论
1906 浏览 0 评论
482 浏览 0 评论
1292 浏览 28 评论
5475 浏览 113 评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-11-11 00:32 , Processed in 0.386528 second(s), Total 38, Slave 31 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号