完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
您好,我正在寻求进行4端口晶圆多线TRL校准程序,我想知道最佳方法是什么。
我已经阅读了网络分析仪帮助,但它使用带有外部测试集的PNA给出了4端口TRL校准的详细信息,使用有效的delta匹配校准。 这个PNA在每个端口都有4个端口,带有参考和测试接收器,所以我不确定该例程是否仍然适用。 我有一个定制校准板,它有多条线路和适当的线路长度,用于标准的2端口TRL。 我还有一个晶圆上的90度弯曲,用于传输到正交端口。 在所有TRL线路长度上我还需要90度弯曲吗? 我过去使用的软件用于4端口晶圆SOLT校准,但我更喜欢带有电容校正的前面板多线校准。 PNA-X是否支持此例程? 谢谢,凯文 以上来自于谷歌翻译 以下为原文 Hello, I am looking to do a 4-port on-wafer multi-line TRL calibration routine, and I am wondering exactly what the best approach is. I have read through the network analyzer help, but it gives a detail of the 4-port TRL cal using a PNA with an external test set using the valid delta match cal. This PNA has 4-ports with reference and test receivers at each port, so I am not sure if the routine is still applicable. I have a custom calibration board that has multiple lines and appropriate line lengths for a standard 2-port TRL. I also have an on-wafer 90 deg bend for transmission to orthogonal ports. Would I also need 90 deg bends at all TRL line lengths? I have in the past used software for a 4-port on wafer SOLT cal, but I would much prefer a front panel multi-line cal with capacitance correction. Does the PNA-X support this routine? Thanks, Kevin |
|
相关推荐
9个回答
|
|
您可以发布模型和FW修订版来帮助我们。
PNA不支持NIST制定的超定“多线TRL”; 但是如果您有多行来定义宽带宽,那么您可以使用多步TRL将正常TRL应用于确定线路的每个频率段。 如果你在一个端口对上是东西方,而在另一个端口对上是南北方,那么巧妙地选择端口通过方法可以允许你使用未知的直通90度弯道。 选择N / S的直通路径以获得TRL; 然后EW有TRL,然后NE或SW有未知的通过。 您只需要三次测量即可进行全4端口校准。 如果您想进行源和接收器功率校准,可以通过将探测器从端口1分离并使用功率计和端口1上的1端口校准(引导功率校准的一部分)来轻松添加,并且此功率会自动移动 对于探针尖端,S参数直通部分还自动计算每个其他接收器和每个源的损耗,因此您具有全功率和S参数校准。 以上来自于谷歌翻译 以下为原文 You might post the model and FW revision to help us. PNA doesn't support overdetermined "Multi-line TRL" ala the NIST formulation; but if you have multiple lines to define a broad bandwidth, then you can use multi-step TRL that applies normal TRL to each of the freqeuncy segments for which the lines are determined. If you prober is East-West on one port pair, and North-south on the other, then cleverly selecting port thru methods can allow you to use unknown thru for the 90 degree bends. Select the thru paths for N/S to have TRL; then EW to have TRL, then NE or SW to have unknown thru. You only need three thru measurments for full 4 port calibration. If you want to do source and receiver power calibrations, those can be easily added by detacing the prober from port 1 and using a power meter and a 1 port calibration on port 1 (part of the guided power cal) and this power is automatically moved to the probe-tip, and the S-parameter thru portion also automatically computes the loss to each other receiver and each source so you have a full power and S-parameter cal. |
|
|
|
嗨Joel博士,型号N5247A是固件A.09.50.13。
过度确定的TRL是否具有重叠带的线? 我对NIST TRL非常熟悉,不太熟悉多步TRL。 听起来好像我需要列出每条线路的带宽并让这些带宽重叠(它们确实如此)。 接下来,当存在重叠时,算法将选择哪条线最适合频段? 编辑:我正在读到列出一行的顺序决定了重叠频带的优先级。另外,我不确定是否可以使用电容(常数C)校正来校正线路的不完美Z0条件。 谢谢,KevinEdited:KevinK于2012年7月6日上午8:37 以上来自于谷歌翻译 以下为原文 Hi Dr. Joel, The model N5247A is firmware A.09.50.13. Is overdetermined TRL having lines with overlapping bands? I am very familiar with the NIST TRL and less familiar with multi-step TRL. It sounds as if I need to list the bandwidth of each line and let these bandwidths overlap (they do). Next, the algorithm will select which line is fitting most appropriately to the band when there is an overlap? EDIT: I am reading that the order in which a line is listed determines its priority for overlapping bands Also, I am uncertain about if a capacitance (constant C) correction is available to correct for imperfect Z0 conditions of the line. Thanks, Kevin Edited by: KevinK on Jul 6, 2012 8:37 AM |
|
|
|
TRL校准的频率看起来很低。
对于100 MHz的起始频率,您需要一条16厘米的空气线。 您使用的是非常长的线路,还是非常高的介电常数。 在这些频率下,你的开放时间是否超过1/2波长(我会怀疑)? TRL中有一个选择,它允许使用反射直通的中心作为相位参考; 但是这种类型的错误通常来自于在TRL数学中不能正确解析sqsa的phsae。 也许如果开放和通过的长度非常不同,那么这可能会导致这样的问题; 在这种情况下,最好指定calkit中每个的近似长度(延迟); 但我不确定这是否会影响这个问题。 以上来自于谷歌翻译 以下为原文 The frequencies look very low for a TRL calibration. For 100 MHz start frequency, you would need a line that is something like 16 cm in air. Are you using very long lines, or very high dielectric constants. Is your open longer than 1/2 wavelenght at these frequencies (I would doubt that)? There is a selection in the TRL that provides for using either the center of the thru of the reflect as the phase reference; but this type of error often comes from not resolving the sqrt of phsae properly in the TRL math. Maybe if the open and thru are very different in length, then this could cause such a problem; in such a case it is good to specify the approximate length (delay) of each in the calkit; but I'm not sure if that would affect this problem or not. |
|
|
|
这是我校准的最低频率范围。 我使用了我最长的线并限制了我的上部频率以便快速校准。 我已经定期用其他软件进行校准。 我使用的是几厘米的线,相对电介质小于3.反射的物理长度是透过物理长度的一半。 我通常选择将参考平面设置在直通的中心。 将会有一个边缘电容增加反射的长度,并且可以在反射的相位中看到(上图)。 这是长度(电气长度)的唯一差异。 如图所示,从10 MHz到2.2 GHz似乎存在问题。 然后,我得到了我期望的结果。 您提到由于未正确解析TRL数学中相位的sqr根,可能会发生此类错误。 可以做些什么来解决这个问题。 我想如果校准程序有问题,LRM校准可能有助于提取低频端。 编辑:我在想“TRM”。 似乎可以用低频率的负载进行校准,然后让线路校正更高的频率。 谢谢,KevinEdited:KevinK于2012年7月10日上午5:34 以上来自于谷歌翻译 以下为原文 This is the lowest frequency range for my calibration. I used my longest line and limited my upper freq for quickness of calibration. I have made this calibration regularly with other software. I am using lines of a couple centimeters, with a relative dielectric of less than 3. The physical length of the reflect is half the physical length of the through. I typically select that the reference plane is set at the center of the through. There will be a fringing capacitance that adds to the length of the reflect, and can be seen in the phase of the reflect (above). This is the only difference in length (electrical length). As seen, there seems to be an issue from 10 MHz to 2.2 GHz. Then, I get the results I expect. You mentioned that this type of error can occur from not properly resolving the sqr root of phase in the TRL math. What can be done to resolve this. I was thinking possibly a LRM calibration could help pick up the low frequency end if the calibration routine has a problem with it. Edit: I was thinking "TRM". It appears that it is possible to do a cal with the load for low freq, and then let lines correct higher frequencies. Thanks, Kevin Edited by: KevinK on Jul 10, 2012 5:34 AM |
|
|
|
如果您使用非基于数据的加载标准,这正是您所期望的。
TRM区域(低于500 MHz)的负载响应仅显示连接器的可重复性,因为标准负载的响应定义为零。 您必须检查您的calkit定义,以确保cal kit中存在基于数据的加载,并为这些频率定义并使用。 确保它的名称不会与标准负载混淆,并且您需要将其正确放置在校准套件中。 但考虑到这一点,我不确定TRM是否支持基于数据的负载标准。 Dave B或Ken Wong可能希望对此有所了解,或者我会在明天尝试一下。 以上来自于谷歌翻译 以下为原文 This is exactly what you would expect if you used a non-data-based load standard. The load response in the TRM region (below 500 MHz) shows just the connector repeatability because the standard load has a response defined as zero. You must check your calkit definition to be sure that a data based load exists in the cal kit and is defined for those frequencies and is used. Be sure that it has a name that does not get confused with a standard load, and you need to position it properly in the cal kit. But in thinking about this, I'm not sure TRM supports data-based standards for the load. Dave B or Ken Wong might want to chime in on this, or I'll try it out tomorrow. |
|
|
|
脑洞大赛9 发表于 2019-7-30 15:39 仅供参考,我认为我们(PNA)支持TRM cals负载的数据库标准。 以上来自于谷歌翻译 以下为原文 FYI it looks to me like we (PNA) do support databased standards for the load in TRM cals. |
|
|
|
乔尔博士,谢谢你的帮助。 好消息是我能够通过调整某些设置来对相对较好的4port多线trl进行基准测试。 为了解决相位误差的问题,我使用反射(给定一个C0)而不是直通的中心来定义参考平面,这是TRL的典型情况。 直通定义仍为0ps(在我的情况下如上所述)。 为了解决与低频响应和不完美线路的Z0校正相关的问题,我使用LRL自动校正以及确保数据参考系统Z0。 我花了一些时间对结果进行基准测试,一切看起来都像预期的那样。 我现在可以继续进行测量。 感谢前面板TRL算法另外测量每条线的/ bn,而不仅仅是直通。 坏消息是,作为基于数据的标准,我仍然无法获得良好的比赛。 我不确定为什么会这样。 我确保点数和频率列表的数量与我的cal相同,我还将文件重命名为加载以外的文件。 与我之前发布的结果相同。 不确定是怎么回事。 我仍然对解决此问题的任何新想法持开放态度。 以上来自于谷歌翻译 以下为原文 Dr. Joel, Thanks for the help. The good news is that I was able to benchmark a relatively good 4port multiline trl by adjusting certain settings. To fix the problem with the phase error, I defined the reference plane using the reflect (given a C0), instead of center of the thru, as is typical for TRL. The thru definition remains 0ps (in my case as described above). To fix the issues related with the low frequency response and Z0 correction for imperfect lines, I used the LRL auto-correction along with ensuring that the data was referenced to system Z0. I spent some time benchmarking the results, and everything looks as expected. I can now move forward with measurements. Kudos that the front panel TRL algorithm additionally measures an/bn for each of the lines, and not just the thru. The bad news is that I am still unable to get a good cal with the match as a data based standard. I am unsure why that is. I ensured that the # of points and frequency lists were identical to my cal, and I also renamed the file something other than load. Same result as I posted previously. Not sure what is going on with that. I am still open to any new ideas for troubleshooting this. |
|
|
|
乔尔博士,谢谢你的帮助。
好消息是我能够通过调整某些设置来对相对较好的4port多线trl进行基准测试。 为了解决相位误差的问题,我使用反射(给定一个C0)而不是直通的中心来定义参考平面,这是TRL的典型情况。 直通定义仍为0ps(在我的情况下如上所述)。 为了解决与低频响应和不完美线路的Z0校正相关的问题,我使用LRL自动校正以及确保数据参考系统Z0。 我花了一些时间对结果进行基准测试,一切看起来都像预期的那样。 我现在可以继续进行测量。 感谢前面板TRL算法另外测量每条线的/ bn,而不仅仅是直通。 坏消息是,作为基于数据的标准,我仍然无法获得良好的比赛。 我不确定为什么会这样。 我确保点数和频率列表的数量与我的cal相同,我还将文件重命名为加载以外的文件。 与我之前发布的结果相同。 不确定是怎么回事。 我仍然对解决此问题的任何新想法持开放态度。 以上来自于谷歌翻译 以下为原文 Dr. Joel, Thanks for the help. The good news is that I was able to benchmark a relatively good 4port multiline trl by adjusting certain settings. To fix the problem with the phase error, I defined the reference plane using the reflect (given a C0), instead of center of the thru, as is typical for TRL. The thru definition remains 0ps (in my case as described above). To fix the issues related with the low frequency response and Z0 correction for imperfect lines, I used the LRL auto-correction along with ensuring that the data was referenced to system Z0. I spent some time benchmarking the results, and everything looks as expected. I can now move forward with measurements. Kudos that the front panel TRL algorithm additionally measures an/bn for each of the lines, and not just the thru. The bad news is that I am still unable to get a good cal with the match as a data based standard. I am unsure why that is. I ensured that the # of points and frequency lists were identical to my cal, and I also renamed the file something other than load. Same result as I posted previously. Not sure what is going on with that. I am still open to any new ideas for troubleshooting this. |
|
|
|
表格看起来不错(我正在寻找不确定性数据),但安捷伦示例有更多的标题内容(来自http://cp.literature.agilent.com/litweb/pdf/5989-4840EN的附录D)
.pdf)。 你可能会尝试添加一些东西(我会说****,但这不会是专业的)。 为什么我们无法阅读一个我永远不会知道的简单S1P文件; 布拉德? (也是布拉德,也许你可以查看文件,看看它是否正常)。 CITIFILE A.01.01 #PNA Rev A.01.00 #PNA STDTYPE DATABASED评论型号:85058-60101评论序列号:NOMINAL #PNA STDREV Rev A.01.00 #PNA STDLABEL“SHORT 1 -M-”#PNA STDDESC“1.85 mm男性[ 简短1]“#PNA STDFRQMIN 0 #PNA STDFRQMAX 70000000000 #PNA STDNUMPORTS 1评论”1.85 mm“已知#PNA DEFINECONNECTOR声明不需要评论#PNA DEFINECONNECTOR”1.85 mm“0 70000000000 COAX #PNA CONNECTOR 1”1.85 mm“MALE评论 PINDEPTH是可选的,仅适用于同轴设备#PNA PINDEPTH 1 0.007 0.007名称数据注释本节介绍s参数数据和校准标准的加权注释因子COMMENT COVERAGEFACTOR用于比例加权因子COMMENT S [i,j]是 sij为标准。 支持的格式:RI COMMENT U [i,j]是sij的加权因子。 评论支持的U [i,j]格式:RI,MAG #PNA COVERAGEFACTOR 2 COMMENT注意点数为509以下VAR Freq MAG 509 DATA S [1,1] RI DATA U [1,1] MAG VAR_LIST_BEGIN 0 10000000 15000000。 .. 70000000000 VAR_LIST_END开始 - 以上来自于谷歌翻译 以下为原文 The form looks OK to me(I was looking for the uncertainty data), but the Agilent example has a lot more header stuff (from Appendix D of http://cp.literature.agilent.com/litweb/pdf/5989-4840EN.pdf ). You might try adding some of that stuff (I was going to say ****, but that would not be professional). Why we can't read a simple S1P file I'll never know; Brad? (also Brad, maybe you can check the file and see if it looks OK). CITIFILE A.01.01 #PNA Rev A.01.00 #PNA STDTYPE DATABASED COMMENT MODEL: 85058-60101 COMMENT SERIAL NUMBER: NOMINAL #PNA STDREV Rev A.01.00 #PNA STDLABEL “SHORT 1 -M-” #PNA STDDESC “1.85 mm male [SHORT 1]” #PNA STDFRQMIN 0 #PNA STDFRQMAX 70000000000 #PNA STDNUMPORTS 1 COMMENT “1.85 mm” known so #PNA DEFINECONNECTOR statement non needed COMMENT #PNA DEFINECONNECTOR “1.85 mm” 0 70000000000 COAX #PNA CONNECTOR 1 “1.85 mm” MALE COMMENT PINDEPTH is optional, only applies to coax devices #PNA PINDEPTH 1 0.007 0.007 NAME DATA COMMENT This section describes the s parameter data and weighting COMMENT factor for the calibration standard COMMENT COVERAGEFACTOR is used to scale the weighting factor COMMENT S[i,j] is sij for the standard. Supported formats: RI COMMENT U[i,j] is the weighting factor for sij. COMMENT Supported U[i,j] formats: RI, MAG #PNA COVERAGEFACTOR 2 COMMENT note number of points is 509 below VAR Freq MAG 509 DATA S[1,1] RI DATA U[1,1] MAG VAR_LIST_BEGIN 0 10000000 15000000 ... 70000000000 VAR_LIST_END BEGIN - |
|
|
|
只有小组成员才能发言,加入小组>>
1342 浏览 0 评论
2400 浏览 1 评论
2227 浏览 1 评论
2088 浏览 5 评论
2980 浏览 3 评论
1285浏览 1评论
关于Keysight x1149 Boundary Scan Analyzer
788浏览 0评论
N5230C用“CALC:MARK:BWID?”获取Bwid,Cent,Q,Loss失败,请问大佬们怎么解决呀
1074浏览 0评论
1342浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-26 14:23 , Processed in 1.330623 second(s), Total 60, Slave 55 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号