完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
做为一名高速数字电路设计或测试的工程师,仅仅借助于传统的时域方法去对信号和传输通道进行研究会面临很多制约。数字工程师需要掌握哪些射频知识呢?让我们分两期带大家去了解一下。 *** 上篇 *** 一、前言 随着人们对于海量数据传输和存储的需要,越来越多的数字总线数据速率达到了Gbit/s以上,比如HDMI的数据速率达到3.4Gb/s,USB3.0 的数据速率达到5Gb/s,SATA的数据速率达到6Gb/s,PCIE3.0的数据速率达到8Gb/s,通信中也越来越多采用10Gb/s或25Gb/s的速率进行信号传输。这些数字信号的数据速率已经达到甚至超过了我们传统上所说的射频或微波的频段,真实的数字信号在传输过程中,也越来越多地表现出其微波电路的特性。 在对这些高速信号进行分析时,传统的时域分析方法面临精度不够以及分析手段欠缺等问题,而射频微波领域的频域的分析手段则非常成熟和完善。因此,对于高速数字信号的分析和测量也越来越多地开始采用一些射频或微波的分析方法。 |
|
相关推荐
2个回答
|
|
二、数字信号的带宽
要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。 图1. 理想和真实数字信号的差异 要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也更高。如果使用的示波器带宽不够,信号里的高频成分会被滤掉,观察到的数字信号也会产生失真。很多数字工程师会习惯用谐波来估算信号带宽,但是这种方法不太准确。 对于一个理想的方波信号,其上升沿是无限陡的,从频域上看它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波的叠加。 但是对于真实的数字信号来说,其上升沿不是无限陡,因此其高次谐波的能量会受到限制。比如下图是用同一个时钟源分别产生的50Mhz和250MHz的时钟信号的频谱,我们可以看到虽然输出时钟频率不一样,但是信号的主要频谱能量都集中在5GHz以内,并不见得250MHz的频谱分布就一定比50MHz的大5倍。 图2. 同一信号源产生的不同频率时钟信号的频谱 对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络是一个Sinc函数。下图是用同一个发射机分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,我们可以看到虽然输出数据速率不一样,但是信号的主要频谱能量都集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。 图3. 同一信号源产生的不同速率数字信号的频谱 频谱仪是对信号能量的频率分布进行分析的最准确的工具,所以数字工程师可以借助于频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间去估算被测信号的频谱能量: Maximum signal frequency content = 0.4/fastest rise or fall time (20 - 80%) Or Maximum signal frequency content = 0.5/fastest rise or fall time (10 - 90%) |
|
|
|
三、传输线对数字信号的影响
通过前面的研究我们知道数字信号的频谱是分布很宽的,其最高的频率分量范围主要取决于信号的上升时间而不仅仅是数据速率。当这样高带宽的数字信号在传输时,所面临的第一个挑战就是传输通道的影响。 真正的传输通道如PCB、电缆、背板、连接器等的带宽都是有限的,这就会把原始信号里的高频成分销弱或完全滤掉,高频成分丢失后在波形上的表现就是信号的边沿变缓、信号上出现过冲或者震荡等。 另外,根据法拉第定律,变化的信号跳变会在导体内产生涡流以抵消电流的变化。电流的变化速率越快(对数字信号来说相当于信号的上升或下降时间越短),导体内的涡流越强烈。当数据速率达到约1Gb/s以上时,导体内信号的电流和感应的电流基本完全抵消,净电流仅被限制在导体的表面上流动,这就是趋肤效应。趋肤效应会增大损耗并改变电路阻抗,阻抗的改变会改变信号的各次谐波的相位关系,从而造成信号的失真。 除此以外,最常用来制造电路板的FR-4介质是玻璃纤维编织成的,其均匀性和对称性都比较差,同时FR-4材料的介电常数还和信号频率有关,所以信号中不同频率分量的传输速度也不一样。传输速度的不同会进一步改变信号中各个谐波成分的相位关系,从而使信号更加恶化。 因此,当高速的数字信号在PCB上传输时,信号的高频分量由于损耗会被销弱,各个不同的频率成分会以不同的速度传输并在接收端再叠加在一起,同时又有一部分能量在阻抗不连续点如过孔、连接器或线宽变化的地方产生多次反射,这些效应的组合都会严重改变波形的形状。要对这么复杂的问题进行分析是一个很大的挑战。 值得注意的一点是,信号的幅度衰减、上升/下降时间的改变、传输时延的改变等很多因素都和频率分量有关,不同频率分量受到的影响是不一样的。而对数字信号来说,其频率分量又和信号中传输的数字符号有关(比如0101的码流和0011的码流所代表的频率分量就不一样),所以不同的数字码流在传输中受到的影响都不一样,这就是码间干扰ISI(inter-symbol interference ISI)。 图4. 受到严重码间干扰的高速数字信号 为了对这么复杂的传输通道进行分析,我们可以通过传输通道冲击响应来研究其对信号的影响。电路的冲击响应可以通过传输一个窄脉冲得到。理想的窄脉冲应该是宽度无限窄、非常高幅度的一个窄脉冲,当这个窄脉冲沿着传输线传输时,脉冲会被展宽,展宽后的形状和线路的响应有关。从数学上来说,我们可以把通道的冲击响应和输入信号卷积得到经通道传输以后信号的波形。冲击响应还可以通过通道的阶跃响应得到,由于阶跃响应的微分就是冲击响应,所以两者是等价的。 看起来我们好像找到了解决问题的方法,但是,在真实情况下,理想窄的脉冲或者无限陡的阶跃信号是不存在的,不仅难以产生而且精度不好控制,所以在实际测试中更多地是使用正弦波进行测试得到频域响应,并通过相应的物理层测试系统软件得到时域响应。相比其它信号,正弦波更容易产生,同时其频率和幅度精度更容易控制。矢量网络分析仪VNA(vector network analyzer)可以在高达几十GHz的频率范围内通过正弦波扫频的方式精确测量传输通道对不同频率的反射和传输特性,动态范围达100dB以上,所以现代在进行高速传输通道分析时主要会用矢量网络分析仪去进行测量。 被测系统对于不同频率正弦波的反射和传输特性可以用S参数(S-parameter)表示,S参数描述的是被测件对于不同频率的正弦波的传输和反射的特性。如果我们能够得到传输通道对于不同频率的正弦波的反射和传输特性,理论上我们就可以预测真实的数字信号经过这个传输通道后的影响,因为真实的数字信号在频域上看可以认为是由很多不同频率的正弦波组成的。 对于一个单端的传输线来说,其包含4个S参数:S11、S22、S21、S12。S11和S22分别反映的是1端口和2端口对于不同频率正弦波的反射特性,S21反映的是从1端口到2端口的不同频率正弦波的传输特性,S12反映的是从2端口到1端口的不同频率正弦波的传输特性。对于差分的传输线来说,由于共有4个端口,所以其S参数更复杂一些,一共有16个。一般情况下会使用4端口甚至更多端口的矢量网络分析仪对差分传输线进行测量以得到其S参数。 图5. 差分传输线的S参数模型 如果得到了被测差分线的16个S参数,这对差分线的很多重要特性就已经得到了,比如说SDD21参数就反映了差分线的插入损耗特性、SDD11参数就反映其回波损耗特性。 我们还可以进一步通过对这些S参数做过反FFT变换得到更多信息。比如对SDD11参数变换得到时域的反射波形(TDR:Time Domain Reflection),通过时域反射波形可以反映出被测传输线上的阻抗变化情况。我们还可以对传输线的SDD21结果做反FFT变换得到其冲击响应,从而预测出不同数据速率的数字信号经过这对差分线以后的波形或者眼图。这对于数字设计工程师都是些非常有用的信息。 图6. 矢量网络分析仪测到的通道插损及分析出的信号眼图 用矢量网络分析仪(VNA)对数字信号的传输通道进行测量,一方面借鉴了射频微波的分析手段,可以在几十GHz的频率范围内得到非常精确的传输通道的特性;另一方面,通过对测量结果进行一些简单的时域变换,我们就可以分析出通道上的阻抗变化、对真实信号传输的影响等,从而帮助数字工程师在前期阶段就可以判断出背板、电缆、连接器、PCB等的好坏,而不必等到最后信号出问题时再去匆忙应对。 |
|
|
|
只有小组成员才能发言,加入小组>>
4688个成员聚集在这个小组
加入小组17626.6标准中关于CDN的疑问?以及实际钳注入测试中是否需要对AE和EUT同时接CDN?
6973 浏览 1 评论
3749 浏览 2 评论
10423 浏览 1 评论
3922 浏览 4 评论
3630 浏览 0 评论
863浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-11 12:21 , Processed in 1.295557 second(s), Total 52, Slave 44 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号