完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
摘要: 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem 整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。
首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem 整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。 当写入过快时会遇见什么问题? 写入过快时,memstore的水位会马上被推高。 你可能会看到以下类似日志: RegionTooBusyException: Above memstore limit, regionName=xxxxx ... 这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush memstore,当达到128M * 4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下: hbase.hregion.memstore.flush.size=128Mhbase.hregion.memstore.block.multiplier=4 或者这样的日志: regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: the global memstore size 1.3 G is >= than blocking 1.3 G sizeregionserver.MemStoreFlusher: Memstore is above high water mark and block 528ms 这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆 hbase.regionserver.global.memstore.upperLimit=0.4 # 较旧版本,新版本兼容hbase.regionserver.global.memstore.size=0.4 # 新版本 当写入被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM crash或者看到如下类似日志: ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.xjava.lang.OutOfMemoryError: Java heap space HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。 如何避免RS OOM? 一种是加快flush速度: hbase.hstore.blockingWaitTime = 90000 mshbase.hstore.flusher.count = 2hbase.hstore.blockingStoreFiles = 10 当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。 同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。 hbase.regionserver.thread.compaction.small = 1hbase.regionserver.thread.compaction.large = 1 增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。 上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法? hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024 # 1G 直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。 原文链接 阅读更多干货好文,请关注扫描以下二维码: |
|
相关推荐
1 个讨论
|
|
只有小组成员才能发言,加入小组>>
2176个成员聚集在这个小组
加入小组3130 浏览 3 评论
1574 浏览 3 评论
4727 浏览 1 评论
2066 浏览 1 评论
3320 浏览 2 评论
556浏览 1评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-1-12 00:55 , Processed in 1.088957 second(s), Total 45, Slave 36 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号