RCC式开关电源及应用威廉希尔官方网站 方案

2012年03月12日 16:28 来源:本站整理 作者:灰色天空 我要评论(0)

线性稳压电源因具有电路简单和成本低廉的优点,一直在低功率应用中倍受欢迎。这个线性稳压电源只需少量元件,且与开关电源SMPS(Switch Mode POWER Supply)相比,更易于设计和制造。然而,由于以下两个原因,近年来线性电源开始逐渐被替代:其一,许多线性电源都是作为PDA、无绳电话和手机等产品的外部电源(EPS)绑定销售。如今EPS必须遵循严格的新节能标准,而此类标准几乎将线性电源排除在外,因为线性电源通常无法达到工作效率和空载功耗方面的标准;其二,大多数先进的低功率SMPS在成本和简单性方面与线性电源相当。这里将探讨低功率SMPS在初步应用阶段的不足之处,并讨论一种可行的方法,以帮助设计工程师设计出在成本效益方面符合EPS新节能标准的产品,并同时缩短设计时间、简化设计工作。

自振反激型变换器。RCC(Ring Choke Converter)由于其电路拓扑简洁,输出与输入电压电气隔离且不需要输出滤波电感,能高效提供多组直流输出,电压升降范围宽等特点而广泛应用于中小功率变换场合,也是容量一般低于50 W的电源经常使用的变换器。被广泛应用于手机充电器以及笔记本适配器等设备。RCC采用和PWM型变换器相对的一种驱动方式,开关的导通和关断不需要专门的触发电路,完全靠电路内部来完成。这种变换器有它独特的优势,即电路简单,具有较高的性价比。但是RCC电路如果用分立元件构成的话,典型电路元件数居然达到50多个,所以设计一种集成的RCC电源器件已成为一种趋势。

这里首先对电路原理进行了详细的分析和设计,通过计算机仿真进行了电路模拟。其次,将该RCC器件应用于充电器进行了实际测试,与理论值相互印证,然后分析了器件测试结果和需要进一步解决的问题。最后给出了结论。


1 RCC器件的应用电路

典型的RCC电路需要约50个分立元件,设计和调试非常困难,可靠性也不够高。为了解决这个问题,设计了一款RCC集成器件,图l是其典型的应用电路。从图中可以看出,分立器件输入侧只有8个分立元件,输出侧有2个分立元件,如果将三极管13001、二极管VD2和电容C4封装进器件的话,分立元件将减少到7个,提高了集成度,将是最简洁的RCC电路。该应用电路的整流滤波电路由二极管VD5和电容C5构成;转换器采用双绕组的反激变换器,功率管选用的型号为13001,启动电路由电阻R6、电容C6串联构成,反激式开关电源集成电路的引脚FB与转换器中的次级线圈相接,引脚SW与功率管13001的发射极相接,功率管13001的集电极与主线圈相接,引脚VCC与电容C6的正极相接,引脚GND接地。

85~220 V交流输入先经过VD5、C5,波形由交流转化为纹波比较大的直流电压,由于上电时电容C6的电压为O V,所以引脚SW的输出管为关断状态,电源通过电阻R6对电容C6充电,当电容C6充电到反激式开关电源集成电路的启动电压时,反激式开关电源集成电路开始正常工作,其内部的振荡器开始启动,SW输出大占空比开关信号去控制输出功率管13001,使得功率管13001也跟着开启和关断,当功率管13001开启时,功率管13001集电极的电压为低电压,这样通过变压器感应到输出和引脚FB的电压均为负电压,当13001关断时,由于电感的电流不能突变,所以功率管13001主线圈上会产生反冲电压,变压器的输出线圈和辅助线圈会耦合出正电压,这时输出的整流二极管VD7导通,电容C6和C8充电,功率管13001在一次开启时,输出线圈和辅助线圈上的耦合电压为负电压,电容C6和C8上的电压可以维持反激式开关电源集成电路的工作电流和输出负载的工作电流。如此循环,系统可以持续的工作下去;输出端的电压控制是由反激式开关电源集成电路内部的过压保护电压控制,当输出负载减小时,VCC的电压上升到过压点,反激式开关电源集成电路内部会将SW关断,这时功率管13001不会导通,直到VCC电压放电到过压点以下,SW才会开启,这样反激式开关电源集成电路就会进入间断工作模式(几个周期工作,几个周期不工作),工作频率会降低。输出电压可以维持在一个恒定值。

12下一页

本文导航

标签:开关电源(797)RCC(11)电源变压器(24)