描述此参考设计将详细说明可为源驱动器和栅极驱动器的辅助电源产生双极电压轨的显示器电源电路。电荷泵可用于为栅极驱动器产生电压电源,从而使得此设计易于实现。通过仅使用一个直流/直流转换器来产生四个电压轨
2018-10-12 15:23:19
是一个18V的TVS二极管,SMBJ18A-HT。U12是稳压器。在TVS的规格书中指出,SMBJ18A的浪涌电流为20.5A,钳位电压为29.2V。对我们的电路来说是完全满足的,因为我们的稳压器在
2019-11-12 11:10:07
栅极与源极之间加一个电阻,这个电阻起到什么作用?一是为场效应管提供偏置电压;二是起到泻放电阻的作用:保护栅极G-源极S;
2019-05-23 07:29:18
能力,保护HPA免受栅极电压增加影响的栅极箝位,以及用于优化脉冲上升时间的过冲补偿。典型漏极脉冲配置通过漏极控制开关HPA的典型配置如图1所示。一个串联FET开启输入HPA的高电压。控制电路需要将逻辑
2019-02-27 08:04:56
IGBT/功率MOSFET是一种电压控制型器件,可用作电源电路、电机驱动器和其它系统中的开关元件。栅极是每个器件的电气隔离控制端。MOSFET的另外两端是源极和漏极,而对于IGBT,它们被称为集电极
2021-01-27 07:59:24
摘要IGBT/功率MOSFET是一种电压控制型器件,可用作电源电路、电机驱动器和其它系统中的开关元件。栅极是每个器件的电气隔离控制端。MOSFET的另外两端是源极和漏极,而对于IGBT,它们被称为
2021-07-09 07:00:00
浪涌电压/电流产生的原因主要由电压突变引起的,浪涌电流是指电网中出现的短时间象“浪”一样的高电压引起的大电流。当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流。 简单形容就像“毛刺”拿示波器看也像“毛刺
2010-05-14 17:12:42
什么是浪涌电流?浪涌电压是怎样产生的?
2021-09-29 07:30:33
能力;4、保护绝大多数的敏感负载;对于不同的威廉希尔官方网站
方式来实现由以下两种:1、电压限制型;2、电压开关型浪拓电子浪涌过电压保护器件分为钳位型和开关型器件。钳位型过压保护器件:瞬态抑制二极管TVS、压敏电阻
2019-11-08 16:07:56
的过电压可能是由内部干扰或大气喷发引起的。根据过电压的产生,电压浪涌分为两类。这些是 内部过压 外部过压 内部过压 当系统中的电压自行升高到超过额定电压时,这种类型的电压称为内部过电压。内部电压
2023-04-20 17:46:59
本帖最后由 Chloe__ 于 2020-8-12 08:58 编辑
关于电压源与电流源串联之后电压源无法正常工作。我用了安捷伦电源的电压源模块给npn三极管供电,正极接集电极,负极接基极
2020-08-11 10:04:29
聚集,产生较高的电压将栅极和源极之间的绝缘层击穿。早期生产的MOS管大都没有防静电的措施,所以在保管及应用上要非常小心,特别是功率较小的MOS管,由于功率较小的MOS管输入电容比较小,接触到静电时产生
2016-12-20 17:01:13
传说中的米勒电容。 这三个等效电容是构成串并联组合关系,它们并不是独立的,而是相互影响,其中一个关键电容就是米勒电容Cgd。这个电容不是恒定的,它随着栅极和漏极间电压变化而迅速变化,同时会影响栅极和源
2023-03-15 16:55:58
普通N MOS管给栅极一个高电压 ,漏极一个低电压,漏源极就能导通。这个GS之间加了背靠背的稳压管,给栅极一个4-10V的电压,漏源极不能导通。是不是要大于栅源击穿电压VGSO(30v)才可以?
2019-06-21 13:30:46
MOS管的开关电路中栅极电阻R5和栅源极级间电阻R6是怎么计算的?在这个电路中有什么用。已知道VDD=3.7V,在可变电阻状态中,作为开关电路是怎么计算R5和R6?
2021-04-19 00:07:09
Multisim里单独一个PMOS管什么也不接只给源极加个电压,用示波器测它漏极为什么会有和源极一样的电压
2016-12-03 15:12:13
Pspice的电压指数脉冲源(VEXP)只能产生单次脉冲?还能产生多次脉冲吗?能产生多次脉冲的话,怎么产生呢?
2020-12-28 09:35:17
)、栅极-源极(发射极)间的Cgs(Cge)、漏极(集电极)-源极(发射极)间的Cds(Cce)这些寄生电容。其中与低边栅极电压升高相关的是Cgd和Cgs。下面的左图表示Cgd(Cgc)、Cgs(Cge
2018-11-30 11:31:17
应用角度来看,驱动回路和功率回路共用了源极的管脚。MOSFET是一个电压型控制的开关器件,其开通关断行为由施加在栅极和源极之间的电压(通常称之为VGS)来决定。 从图1模型来看,有几个参数是我们需要
2023-02-27 16:14:19
老规矩先放结论:与反向并联的二极管一同构成硬件死区电路形如:驱动电路电压源为mos结电容充电时经过栅极电阻,栅极电阻降低了充电功率,延长了栅极电容两端电压达到mos管开启电压的速度;结电容放电时经
2021-11-16 08:27:47
等于Rs * Id的压降,从而使源极端的电势高于0v或接地电平。由于漏极电流而导致的Rs两端的电压降为栅极电阻R2两端提供了必要的反向偏置条件,从而有效地产生了负反馈。因此,为了保持栅极-源极结的反向
2020-09-16 09:40:54
两端将产生等于Rs * Id的压降,从而使源极端的电势高于0v或接地电平。由于漏极电流引起的Rs两端的电压降为栅极电阻R2两端提供了必要的反向偏置条件,从而有效地产生了负反馈。因此,为了保持栅极-源极结
2020-11-03 09:34:54
器件的栅极、源极,LD为漏极的封装电感,LS为源极的封装电感,LG为栅极的封装电感,RG为内部的栅极电阻总和。 图1:功率MOSFET的寄生参数模型 电感中流过变化的电流时,其产生的感应电
2020-12-08 15:35:56
源极电压的最大值V(BR)DSS、栅极阈值电压V(BR)GS以及SOA。V(BR)DSS漏源极电压的最大值:V(BR)DSS漏源极电压的最大值必须高于最高电源电压。如果在出现输出短路接地或在过压
2022-04-02 10:33:47
电容充电,充电峰值电流会超过了单片机的 I/O 输出能力,串上 R17 后可放慢充电时间而减小栅极充电电流。 第三,当栅极关断时,MOS管的D-S极从导通状态变为截止状态时,漏源极电压VDS会迅速增加
2023-03-10 15:06:47
电压。将这些式子结合起来,可得到MOSFET栅极驱动电压是漏源电压的函数:VGS=-(R2/R1)VDS二极管规格书下载:
2021-04-08 11:37:38
。充电时间结束后,产生单次触发脉冲,同时触发隔离单元及被试器件,通过电压源放电产生LC振荡,为被试元件提供浪涌电流。浪涌电流信号通过FL分流器取得,浪涌电流隔离后反馈给工控机,由工控机运算后显示在界面
2018-08-02 18:23:37
浪涌保护与之相近的是ESD静电防护。浪涌电压是导致计算机误动作、数据丢失的主要原因。浪涌电压也会导致计算机软损伤,软损伤就是...
2021-09-13 06:37:58
TG传输门电路中。当C端接+5,C非端接0时。源极和衬底没有连在一起,为什么当输入信号改变时,其导通程度怎么还会改变?导电程度不是由栅极和衬底间的电场决定的吗?而栅极和衬底间的电压不变。所以其导通程度应该与输入信号变化无关啊!而书上说起导通程度岁输入信号的改变而改变?为什么?求详细解释!谢谢!
2012-03-29 22:51:18
和CN4的+18V、CN3和CN6的-3V为驱动器的电源。电路中增加了CGS和米勒钳位MOSFET,使包括栅极电阻在内均可调整。将该栅极驱动器与全SiC功率模块的栅极和源极连接,来确认栅极电压的升高情况
2018-11-27 16:41:26
和漏极电荷Qgs:栅极和源极电荷栅极电荷测试的原理图和相关波形见图1所示。在测量电路中,栅极使用恒流源驱动,也就是使用恒流源IG给测试器件的栅极充电,漏极电流ID由外部电路提供,VDS设定为最大
2017-01-13 15:14:07
功率MOSFET的结构特点为什么要在栅极和源极之间并联一个电阻呢?
2021-03-10 06:19:21
至nVo。因此初级总漏感Lk(即Lkp+n2×Lks)和Coss之间发生谐振,产生高频和高压浪涌,MOSFET上过高的电压可能导致故障。反激式转换器可以工作在连续导通模式(CCM)(如图2)和不连续导
2018-10-10 20:44:59
开关损耗降低多达 26%。 电流源驱动器 (CSD) 和电压源驱动器 (VSD): 图1显示了栅极驱动器BM61M41RFV-C(传统电压源驱动器)与BM60059FV-C(电流源驱动器)的框图。还
2023-02-21 16:36:47
!它在高侧栅极驱动器源连接(R57、R58 和 R59)中也有 4R7 电阻,我不明白为什么需要这些。是否有任何设计指南可以告诉我如何定义栅极电阻器、自举电容器以及为什么高侧栅极驱动器可能需要对 MOSFET 源极施加一些电阻?
2023-04-19 06:36:06
如果只给mos管偏置电流,栅极为什么会产生偏置电压?一般不都是给偏置电压,产生偏置电流吗?反过来也可以吗,有没有大佬解释一下,谢谢。电流镜和这个有关系吗?大佬方便解释一下吗,谢谢。
2021-06-24 07:24:50
很多开关电源(特别是大功率开关电源)在加电瞬间要汲取一个较大的电流。这个浪涌电流可能达到电源静态工作电流的1O倍~100倍。由此,至少有可能产生两个方面的问题。第一,如果直流电源不能供给足够的启动
2015-09-11 10:42:13
过程引起的微浪涌电压,给电机的绝缘带来影响,造成电机损伤。这里把浪涌称为微浪涌是为了区别于雷电等突发的强大浪涌,微浪涌从示波器上看是密集的、连续存在的、很窄的尖峰电压。 本文对微浪涌电压的发生
2021-03-10 07:35:56
用继电器(24VDC)控制交流接触器220VAC,产生的浪涌严重影响控制电路,怎么防止或吸收浪涌?
2018-03-23 19:39:14
来源:互联网浪涌,就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。产生浪涌有很多方面的原因。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收
2020-10-22 18:37:10
求大神帮忙推荐一个输入12v电压的场效应管:具体就是漏极与源极之间的电压为12v,栅极无输入电压时,源极与漏极截止,当栅极输入电压时,源极与漏极导通,求大神推荐一下产品,顺便告知一下电阻选用哪个范围的?谢谢
2015-08-17 16:07:41
。第五种:栅极电涌、静电破坏主要有因在栅极和源极之间如果存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏
2019-03-13 06:00:00
耦合后会在MOS管的栅极输入端产生振荡电压,振荡电压会破坏MOS管的氧化层。 三、MOS管导通和截止的瞬间,漏极的高电压会通过MOS管内部的漏源电容偶合到功率MOS管的栅极处,使MOS管受损。 四
2018-10-19 16:21:14
。 五、栅极电涌、静电破坏 主要有因在栅极和源极之间如果存在电压浪涌和静电而弓起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏
2018-11-21 13:52:55
*VGS。给栅极施加所需要的电压波形,在漏极就会输出相应的电流波形。因此,选用大功率VDMOS管适合用于实现所需的浪涌电流波形,<span] 运放组成基本的反向运算电路,驱动VDMOS管
2018-09-25 11:30:29
绍的需要准确测量栅极和源极之间产生的浪涌。找元器件现货上唯样商城在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般
2022-09-20 08:00:00
1.肖特基二极管的电流源分析 电流源产生的电流流过正向肖特基二极管,此时系统的电压U为: 按题主的意思,肖特基二极管是所谓“理想的”,因此它的正向电阻为零,于是有: 现在,我们把肖特基
2021-12-31 06:26:43
1.题主的电流源分析 电流源产生的电流流过正向肖特基二极管,此时系统的电压U为: 按题主的意思,肖特基二极管是所谓“理想的”,因此它的正向电阻为零,于是有: 现在,我们把肖特基二极管反接
2022-01-03 06:56:53
破坏主要是在栅极和源极之间存在电压浪涌和静电而引起的破坏,即栅极过电压破坏和由上电状态中静电在GS两端(包括安装和和测定设备的带电)而导致的栅极破坏。
2021-11-10 07:00:00
`设计了一个D类功放,在不加大电压的情况下,用示波器测量功放管的栅极处的驱动信号是正常的,但是在管子漏极加70V电压工作时,驱动信号有毛刺,导致电源保护,请问大神们有遇到过这种情况的吗,怎么解决?下图分别为加入70V漏源电压和不加漏源电压时栅源极驱动信号波形。`
2019-02-21 11:23:53
两层电源板,板子设计中有4个MOSFET管串联,由于只有两层,四个MOSFET管的3个源级要过大电流,所以用铜连接在一起;四个MOSFET管栅极串联的线走在器件源级和漏极之间(请看图片),不知道这样的栅极走线会不会受影响?
2018-07-24 16:19:28
Q1的栅极、源极间电阻R1并联追加电容器C2, 并缓慢降低Q1的栅极电压,可以缓慢地使RDS(on)变小,从而可以抑制浪涌电流。■负载开关等效电路图关于Nch MOSFET负载开关ON时的浪涌电流应对
2019-07-23 01:13:34
开关操作) 前端保护向浪涌电压过渡 像二极管整流桥一样,混合式整流桥也与市电插座直接相连,如果有浪涌电压,很可能会烧毁整流桥和PFC芯片(例如,图1中的旁通二极管D4)。 按照IEC61000-4-5
2018-10-11 16:04:02
IGBT/功率 MOSFET 是一种电压控制型器件,可用作电源电路、电机驱动器和其它系统中的开关元件。栅极是每个器件的电气隔离控制端。MOSFET的另外两端是源极和漏极,而对于IGBT,它们被称为
2018-10-25 10:22:56
Sanket Sapre摘要IGBT/功率MOSFET是一种电压控制型器件,可用作电源电路、电机驱动器和其它系统中的开关元件。栅极是每个器件的电气隔离控制端。MOSFET的另外两端是源极和漏极,而对
2018-11-01 11:35:35
极之间连接几nF的电容。如果希望进一步了解详细信息,请参考应用指南中的“SiC-MOSFET 栅极-源极电压的浪涌抑制方法”。接下来是关断时的波形。可以看出,TO-247N封装产品(浅蓝色实线
2022-06-17 16:06:12
比例不断缩小,对芯片面积的挑战越来越严重,双极型晶体管以及高精度电阻所占用的面积则成为一个非常严重的问题。在此,提出一种通过两个工作在饱和区的MOS管的栅源电压差原理,产生一个与绝对温度成正比
2018-11-30 16:38:24
雷击和电压浪涌产生及危害
电压浪涌是指电子系统额定工作电压瞬时升高,其幅度达到额定工作电压的几倍~几百倍。电压浪涌可能引起通信系统的数据
2010-05-15 15:01:2935 浪涌电压基本知识
电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高
2009-06-30 13:35:411833 浪涌电压抑制器及其应用
1浪涌电压
电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)
2009-07-09 14:59:522076 继电器线圈浪涌电压抑制
继电器线圈在注入能量以后,在开关断开的一瞬间,会产生一个巨大的直流浪涌电压,这个电压在高边开关的时候是负电
2009-11-21 14:24:046015 浪涌(Electrical surge),顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万
2017-08-18 08:59:4613596 开关电源雷击浪涌的产生与防护 雷击浪涌的产生 雷击浪涌在开关电源中的流通回路的分析(共模信号与差模信号) 一种防雷击浪涌的开关电源电路的设计。 雷击浪涌电路的人工产生与防雷击浪涌的电路的可靠性测试
2017-11-06 17:39:065621 但当变频器和电机之间的接线距离很长时,电机接线端因变频器的高速开关过程引起的微浪涌电压,给电机的绝缘带来影响,造成电机损伤。这里把浪涌称为微浪涌是为了区别于雷电等突发的强大浪涌,微浪涌从示波器上看是
2017-11-13 16:36:155 浪涌也叫突波,就是超出正常电压的瞬间过电压,一般指电网中出现的短时间象“浪”一样的高电压引起的大电流。从本质上讲,浪涌就是发生在仅仅百万上之一秒内的一种剧烈脉冲。浪涌电压的产生原因有两个,一个是雷电,另一个是电网上的大型负荷接通或断开(包括补偿电容的投切)时产生的。
2018-01-11 11:09:3234153 平时在做浪涌测试时,总是提到的参数是设备所能承受的浪涌电压,如差模2KV,共模4KV等。在选用防浪涌所用的TVS时,也就经常考虑这个问题,TVS哪个参数能对应出不同的浪涌电压值。
2021-03-17 23:57:5734 中,我们将对相应的对策进行探讨。关于栅极-源极间电压产生的浪涌,在之前发布的Tech Web基础知识 SiC功率元器件 应用篇的“SiC MOSFET:桥式结构中栅极-源极间电压的动作”中已进行了详细说明。
2021-06-12 17:12:002563 忽略SiC MOSFET本身的封装电感和外围电路的布线电感的影响。特别是栅极-源极间电压,当SiC MOSFET本身的电压和电流发生变化时,可能会发生意想不到的正浪涌或负浪涌,需要对此采取对策。 在本文中,我们将对相应的对策进行探讨。 什么是栅极-源极电压产生的
2021-06-10 16:11:442121 SiC MOSFET具有出色的开关特性,但由于其开关过程中电压和电流变化非常大,因此如Tech Web基础知识 SiC功率元器件“SiC MOSFET:桥式结构中栅极-源极间电压的动作-前言”中介绍的需要准确测量栅极和源极之间产生的浪涌。
2022-09-14 14:28:53753 电压浪涌保护器 适用于TN和TT,IT供电系统 具有遥信触点和失效指示功能 可插拔模块方便更换 内置过温保护,更安全的失效保护 电压浪涌保护器应用: 交直流系统 新能源 民用建筑 通信 数据中心
2022-10-18 14:28:12465 为了提高电子产品的可靠性和人体自身的安全性,必须对电压瞬变和浪涌采取防护措施。 产生浪涌的原因是多方面的,浪涌是一种上升速度高、持续时间短的尖峰脉冲。 电网过压、开关打火、虬源反向、静电、电机/电源噪声等都是产生浪涌的因素。
2022-12-08 09:37:104841 MOSFET和IGBT等功率半导体作为开关元件已被广泛应用于各种电源应用和电力线路中。
2023-02-08 13:43:24284 在上一篇文章中,简单介绍了SiC功率元器件中栅极-源极电压中产生的浪涌。从本文开始,将介绍针对所产生的SiC功率元器件中浪涌的对策。本文先介绍浪涌抑制电路。
2023-02-09 10:19:15696 本文的关键要点:通过采取措施防止栅极-源极间电压的正电压浪涌,来防止LS导通时的HS误导通。如果栅极驱动IC没有驱动米勒钳位用MOSFET的控制功能,则很难通过米勒钳位进行抑制。作为米勒钳位的替代方案,可以通过增加误导通抑制电容器来处理。
2023-02-09 10:19:15515 本文的关键要点・通过采取措施防止SiC MOSFET中栅极-源极间电压的负电压浪涌,来防止SiC MOSFET的LS导通时,SiC MOSFET的HS误导通。・具体方法取决于各电路中所示的对策电路的负载。
2023-02-09 10:19:16589 关于SiC功率元器件中栅极-源极间电压产生的浪涌,在之前发布的Tech Web基础知识 SiC功率元器件 应用篇的“SiC MOSFET:桥式结构中栅极-源极间电压的动作”中已进行了详细说明,如果需要了解,请参阅这篇文章。
2023-02-09 10:19:17707 下图显示了同步升压电路中LS导通时栅极-源极电压的行为,该图在之前的文章中也使用过。要想抑制事件(II),即HS(非开关侧)的VGS的正浪涌,正如在上一篇文章的表格中所总结的,采用浪涌抑制电路的米勒钳位用MOSFET Q2、或误导通抑制电容器C1是很有效的方法(参见下面的验证电路)。
2023-02-28 11:40:19149 下图显示了同步升压电路中LS关断时栅极-源极电压的行为,该图在之前的文章中也使用过。要想抑制事件(IV),即HS(非开关侧)的VGS的负浪涌,采用浪涌抑制电路的米勒钳位用MOSFET Q2、或钳位用SBD(肖特基势垒二极管)D3是很有效的方法(参见下面的验证电路)。
2023-02-28 11:41:23389 本文是“SiC MOSFET:栅极-源极电压的浪涌抑制方法”系列文章的总结篇。介绍SiC MOSFET的栅极-源极电压产生的浪涌、浪涌抑制电路、正电压浪涌对策、负电压浪涌对策和浪涌抑制电路的电路板
2023-04-13 12:20:02814 集成电路电浪涌的产生和预防
2022-07-29 10:33:111713 浪涌电流怎么产生? 浪涌电流是指在电气设备或电力系统中,由于突发的电力波动或电压变异等原因而引发的瞬时电流。这些电压波动和变异可以是由于闪电、开关电源的切换、短路、电力故障等引起的,它们都可以导致
2023-09-04 17:48:072865 MOSFET栅极电路电压对电流的影响?MOSFET栅极电路电阻的作用? MOSFET(金属-氧化物-半导体场效应晶体管)是一种广泛应用于电子设备中的半导体器件。在MOSFET中,栅极电路的电压和电阻
2023-10-22 15:18:121369 桥式结构中的栅极-源极间电压的行为:导通时
2023-12-05 16:35:57129 引起:闸刀的合、分闸操作;雷电、闪电等自然灾害;大功率设备的开关操作;电力系统中的故障产生等。 首先,人们需要了解浪涌过电压的危害。浪涌过电压对电力设备和电子设备都会造成一定程度的破坏,严重情况下甚至会引发火灾和安
2024-01-03 11:20:57463 由于这种开关工作,受开关侧LS电压和电流变化的影响,不仅在开关侧的LS产生浪涌,还会在同步侧的HS产生浪涌。
2024-01-24 14:10:33139 如何抑制电源转换器中的浪涌电压? 电源转换器是电子设备中常见的组件,其主要功能是将电源输入转换成稳定的输出电压和电流。然而,在电源转换过程中,常常会产生浪涌电压,这可能对电子设备及其周围的电路产生
2024-02-04 09:17:00322
评论
查看更多